| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chcoeffeq.a |  | 
						
							| 2 |  | chcoeffeq.b |  | 
						
							| 3 |  | chcoeffeq.p |  | 
						
							| 4 |  | chcoeffeq.y |  | 
						
							| 5 |  | chcoeffeq.r |  | 
						
							| 6 |  | chcoeffeq.s |  | 
						
							| 7 |  | chcoeffeq.0 |  | 
						
							| 8 |  | chcoeffeq.t |  | 
						
							| 9 |  | chcoeffeq.c |  | 
						
							| 10 |  | chcoeffeq.k |  | 
						
							| 11 |  | chcoeffeq.g |  | 
						
							| 12 |  | chcoeffeq.w |  | 
						
							| 13 |  | chcoeffeq.1 |  | 
						
							| 14 |  | chcoeffeq.m |  | 
						
							| 15 |  | chcoeffeq.u |  | 
						
							| 16 |  | cayhamlem.e1 |  | 
						
							| 17 |  | cayhamlem.r |  | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | chcoeffeq |  | 
						
							| 19 |  | 2fveq3 |  | 
						
							| 20 |  | fveq2 |  | 
						
							| 21 | 20 | oveq1d |  | 
						
							| 22 | 19 21 | eqeq12d |  | 
						
							| 23 | 22 | cbvralvw |  | 
						
							| 24 |  | 2fveq3 |  | 
						
							| 25 |  | fveq2 |  | 
						
							| 26 | 25 | oveq1d |  | 
						
							| 27 | 24 26 | eqeq12d |  | 
						
							| 28 | 27 | rspccva |  | 
						
							| 29 |  | simprll |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 9 1 2 3 30 | chpmatply1 |  | 
						
							| 32 | 29 31 | syl |  | 
						
							| 33 | 10 32 | eqeltrid |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 34 30 3 35 | coe1f |  | 
						
							| 37 | 33 36 | syl |  | 
						
							| 38 |  | fvex |  | 
						
							| 39 |  | nn0ex |  | 
						
							| 40 | 38 39 | pm3.2i |  | 
						
							| 41 |  | elmapg |  | 
						
							| 42 | 40 41 | mp1i |  | 
						
							| 43 | 37 42 | mpbird |  | 
						
							| 44 |  | simpl |  | 
						
							| 45 | 35 1 2 13 14 16 17 | cayhamlem2 |  | 
						
							| 46 | 29 43 44 45 | syl12anc |  | 
						
							| 47 | 46 | adantl |  | 
						
							| 48 |  | oveq2 |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 | 47 49 | eqtr4d |  | 
						
							| 51 | 50 | exp32 |  | 
						
							| 52 | 51 | com12 |  | 
						
							| 53 | 52 | adantl |  | 
						
							| 54 | 28 53 | mpd |  | 
						
							| 55 | 54 | com12 |  | 
						
							| 56 | 55 | impl |  | 
						
							| 57 | 56 | mpteq2dva |  | 
						
							| 58 | 57 | oveq2d |  | 
						
							| 59 | 58 | ex |  | 
						
							| 60 | 23 59 | biimtrid |  | 
						
							| 61 | 60 | reximdva |  | 
						
							| 62 | 61 | reximdva |  | 
						
							| 63 | 18 62 | mpd |  |