| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chcoeffeq.a |  | 
						
							| 2 |  | chcoeffeq.b |  | 
						
							| 3 |  | chcoeffeq.p |  | 
						
							| 4 |  | chcoeffeq.y |  | 
						
							| 5 |  | chcoeffeq.r |  | 
						
							| 6 |  | chcoeffeq.s |  | 
						
							| 7 |  | chcoeffeq.0 |  | 
						
							| 8 |  | chcoeffeq.t |  | 
						
							| 9 |  | chcoeffeq.c |  | 
						
							| 10 |  | chcoeffeq.k |  | 
						
							| 11 |  | chcoeffeq.g |  | 
						
							| 12 |  | chcoeffeq.w |  | 
						
							| 13 |  | chcoeffeq.1 |  | 
						
							| 14 |  | chcoeffeq.m |  | 
						
							| 15 |  | chcoeffeq.u |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 1 2 3 4 8 5 6 7 11 16 17 18 19 20 21 12 22 23 24 25 15 26 | cpmadumatpoly |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 1 2 3 4 19 28 17 18 29 9 10 30 13 14 8 12 22 23 24 25 26 | cpmidpmat |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 1 2 32 3 4 19 8 6 17 18 20 21 5 | cpmadurid |  | 
						
							| 34 | 9 | fveq1i |  | 
						
							| 35 | 10 34 | eqtri |  | 
						
							| 36 | 35 | a1i |  | 
						
							| 37 | 36 | eqcomd |  | 
						
							| 38 | 37 | oveq1d |  | 
						
							| 39 | 33 38 | eqtrd |  | 
						
							| 40 |  | fveq2 |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 |  | simpr |  | 
						
							| 44 | 42 43 | eqeq12d |  | 
						
							| 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | chcoeffeqlem |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 | 44 47 | sylbid |  | 
						
							| 49 | 48 | exp31 |  | 
						
							| 50 | 49 | com24 |  | 
						
							| 51 | 40 50 | syl5 |  | 
						
							| 52 | 51 | ex |  | 
						
							| 53 | 52 | com24 |  | 
						
							| 54 | 31 39 53 | mp2d |  | 
						
							| 55 | 54 | impl |  | 
						
							| 56 | 55 | reximdva |  | 
						
							| 57 | 56 | reximdva |  | 
						
							| 58 | 27 57 | mpd |  |