| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chcoeffeq.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | chcoeffeq.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | chcoeffeq.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | chcoeffeq.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | chcoeffeq.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 6 |  | chcoeffeq.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 7 |  | chcoeffeq.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 8 |  | chcoeffeq.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 9 |  | chcoeffeq.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 10 |  | chcoeffeq.k | ⊢ 𝐾  =  ( 𝐶 ‘ 𝑀 ) | 
						
							| 11 |  | chcoeffeq.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 12 |  | chcoeffeq.w | ⊢ 𝑊  =  ( Base ‘ 𝑌 ) | 
						
							| 13 |  | chcoeffeq.1 | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 14 |  | chcoeffeq.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 15 |  | chcoeffeq.u | ⊢ 𝑈  =  ( 𝑁  cPolyMatToMat  𝑅 ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑁  ConstPolyMat  𝑅 )  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 17 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑌 )  =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 18 |  | eqid | ⊢ ( 1r ‘ 𝑌 )  =  ( 1r ‘ 𝑌 ) | 
						
							| 19 |  | eqid | ⊢ ( var1 ‘ 𝑅 )  =  ( var1 ‘ 𝑅 ) | 
						
							| 20 |  | eqid | ⊢ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  =  ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 21 |  | eqid | ⊢ ( 𝑁  maAdju  𝑃 )  =  ( 𝑁  maAdju  𝑃 ) | 
						
							| 22 |  | eqid | ⊢ ( Poly1 ‘ 𝐴 )  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 23 |  | eqid | ⊢ ( var1 ‘ 𝐴 )  =  ( var1 ‘ 𝐴 ) | 
						
							| 24 |  | eqid | ⊢ (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) )  =  (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) | 
						
							| 25 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) )  =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) | 
						
							| 26 |  | eqid | ⊢ ( 𝑁  pMatToMatPoly  𝑅 )  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 27 | 1 2 3 4 8 5 6 7 11 16 17 18 19 20 21 12 22 23 24 25 15 26 | cpmadumatpoly | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 28 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 29 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 30 |  | eqid | ⊢ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  =  ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) | 
						
							| 31 | 1 2 3 4 19 28 17 18 29 9 10 30 13 14 8 12 22 23 24 25 26 | cpmidpmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 32 |  | eqid | ⊢ ( 𝑁  CharPlyMat  𝑅 )  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 33 | 1 2 32 3 4 19 8 6 17 18 20 21 5 | cpmadurid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) )  =  ( ( ( 𝑁  CharPlyMat  𝑅 ) ‘ 𝑀 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) | 
						
							| 34 | 9 | fveq1i | ⊢ ( 𝐶 ‘ 𝑀 )  =  ( ( 𝑁  CharPlyMat  𝑅 ) ‘ 𝑀 ) | 
						
							| 35 | 10 34 | eqtri | ⊢ 𝐾  =  ( ( 𝑁  CharPlyMat  𝑅 ) ‘ 𝑀 ) | 
						
							| 36 | 35 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐾  =  ( ( 𝑁  CharPlyMat  𝑅 ) ‘ 𝑀 ) ) | 
						
							| 37 | 36 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑁  CharPlyMat  𝑅 ) ‘ 𝑀 )  =  𝐾 ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( ( 𝑁  CharPlyMat  𝑅 ) ‘ 𝑀 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  =  ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) | 
						
							| 39 | 33 38 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) )  =  ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) | 
						
							| 40 |  | fveq2 | ⊢ ( ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) )  =  ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  →  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) | 
						
							| 41 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  →  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  ∧  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  →  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  ∧  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  →  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 44 | 42 43 | eqeq12d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  ∧  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  ↔  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | chcoeffeqlem | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  →  ( ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  ∧  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  →  ( ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 48 | 44 47 | sylbid | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  ∧  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 49 | 48 | exp31 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) ) ) | 
						
							| 50 | 49 | com24 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) ) ) | 
						
							| 51 | 40 50 | syl5 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) )  =  ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) ) ) | 
						
							| 52 | 51 | ex | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) )  =  ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) ) ) ) | 
						
							| 53 | 52 | com24 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ( ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) )  =  ( 𝐾 (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  →  ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) ) ) ) | 
						
							| 54 | 31 39 53 | mp2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) ) | 
						
							| 55 | 54 | impl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 56 | 55 | reximdva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  →  ( ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 57 | 56 | reximdva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( ( 𝑁  pMatToMatPoly  𝑅 ) ‘ ( ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑁  maAdju  𝑃 ) ‘ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) | 
						
							| 58 | 27 57 | mpd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) |