| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chcoeffeq.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | chcoeffeq.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | chcoeffeq.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | chcoeffeq.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | chcoeffeq.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 6 |  | chcoeffeq.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 7 |  | chcoeffeq.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 8 |  | chcoeffeq.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 9 |  | chcoeffeq.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 10 |  | chcoeffeq.k | ⊢ 𝐾  =  ( 𝐶 ‘ 𝑀 ) | 
						
							| 11 |  | chcoeffeq.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 12 |  | chcoeffeq.w | ⊢ 𝑊  =  ( Base ‘ 𝑌 ) | 
						
							| 13 |  | chcoeffeq.1 | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 14 |  | chcoeffeq.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 15 |  | chcoeffeq.u | ⊢ 𝑈  =  ( 𝑁  cPolyMatToMat  𝑅 ) | 
						
							| 16 |  | eqid | ⊢ ( Poly1 ‘ 𝐴 )  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 17 |  | eqid | ⊢ ( var1 ‘ 𝐴 )  =  ( var1 ‘ 𝐴 ) | 
						
							| 18 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) )  =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) | 
						
							| 19 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 20 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 21 | 19 20 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  Ring ) | 
						
							| 22 | 21 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐴  ∈  Ring ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐴  ∈  Ring ) | 
						
							| 24 |  | eqid | ⊢ (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) )  =  (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) | 
						
							| 25 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 26 |  | eqid | ⊢ ( 𝑁  ConstPolyMat  𝑅 )  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 27 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑌 )  =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 28 |  | eqid | ⊢ ( 1r ‘ 𝑌 )  =  ( 1r ‘ 𝑌 ) | 
						
							| 29 |  | eqid | ⊢ ( var1 ‘ 𝑅 )  =  ( var1 ‘ 𝑅 ) | 
						
							| 30 |  | eqid | ⊢ ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) )  =  ( ( ( var1 ‘ 𝑅 ) (  ·𝑠  ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  −  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 31 |  | eqid | ⊢ ( 𝑁  maAdju  𝑃 )  =  ( 𝑁  maAdju  𝑃 ) | 
						
							| 32 | 1 2 3 4 8 5 6 7 11 26 27 28 29 30 31 12 16 17 24 18 15 | cpmadumatpolylem1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑈  ∘  𝐺 )  ∈  ( 𝐵  ↑m  ℕ0 ) ) | 
						
							| 33 | 32 | anasss | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑈  ∘  𝐺 )  ∈  ( 𝐵  ↑m  ℕ0 ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 11 26 | chfacfisfcpmat | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺 : ℕ0 ⟶ ( 𝑁  ConstPolyMat  𝑅 ) ) | 
						
							| 35 | 19 34 | syl3anl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺 : ℕ0 ⟶ ( 𝑁  ConstPolyMat  𝑅 ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( 𝑈  ∘  𝐺 )  ∈  ( 𝐵  ↑m  ℕ0 ) )  →  𝐺 : ℕ0 ⟶ ( 𝑁  ConstPolyMat  𝑅 ) ) | 
						
							| 37 |  | fvco3 | ⊢ ( ( 𝐺 : ℕ0 ⟶ ( 𝑁  ConstPolyMat  𝑅 )  ∧  𝑙  ∈  ℕ0 )  →  ( ( 𝑈  ∘  𝐺 ) ‘ 𝑙 )  =  ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) ) | 
						
							| 38 | 37 | eqcomd | ⊢ ( ( 𝐺 : ℕ0 ⟶ ( 𝑁  ConstPolyMat  𝑅 )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( 𝑈  ∘  𝐺 ) ‘ 𝑙 ) ) | 
						
							| 39 | 36 38 | sylan | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( 𝑈  ∘  𝐺 )  ∈  ( 𝐵  ↑m  ℕ0 ) )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( 𝑈  ∘  𝐺 ) ‘ 𝑙 ) ) | 
						
							| 40 |  | elmapi | ⊢ ( ( 𝑈  ∘  𝐺 )  ∈  ( 𝐵  ↑m  ℕ0 )  →  ( 𝑈  ∘  𝐺 ) : ℕ0 ⟶ 𝐵 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( 𝑈  ∘  𝐺 )  ∈  ( 𝐵  ↑m  ℕ0 ) )  →  ( 𝑈  ∘  𝐺 ) : ℕ0 ⟶ 𝐵 ) | 
						
							| 42 | 41 | ffvelcdmda | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( 𝑈  ∘  𝐺 )  ∈  ( 𝐵  ↑m  ℕ0 ) )  ∧  𝑙  ∈  ℕ0 )  →  ( ( 𝑈  ∘  𝐺 ) ‘ 𝑙 )  ∈  𝐵 ) | 
						
							| 43 | 39 42 | eqeltrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( 𝑈  ∘  𝐺 )  ∈  ( 𝐵  ↑m  ℕ0 ) )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  ∈  𝐵 ) | 
						
							| 44 | 43 | ralrimiva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( 𝑈  ∘  𝐺 )  ∈  ( 𝐵  ↑m  ℕ0 ) )  →  ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  ∈  𝐵 ) | 
						
							| 45 | 33 44 | mpdan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  ∈  𝐵 ) | 
						
							| 46 | 19 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 47 | 46 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 49 | 1 2 26 15 | cpm2mf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑈 : ( 𝑁  ConstPolyMat  𝑅 ) ⟶ 𝐵 ) | 
						
							| 50 | 48 49 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑈 : ( 𝑁  ConstPolyMat  𝑅 ) ⟶ 𝐵 ) | 
						
							| 51 |  | fcompt | ⊢ ( ( 𝑈 : ( 𝑁  ConstPolyMat  𝑅 ) ⟶ 𝐵  ∧  𝐺 : ℕ0 ⟶ ( 𝑁  ConstPolyMat  𝑅 ) )  →  ( 𝑈  ∘  𝐺 )  =  ( 𝑙  ∈  ℕ0  ↦  ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) ) ) | 
						
							| 52 | 50 35 51 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑈  ∘  𝐺 )  =  ( 𝑙  ∈  ℕ0  ↦  ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) ) ) | 
						
							| 53 | 1 2 3 4 8 5 6 7 11 26 27 28 29 30 31 12 16 17 24 18 15 | cpmadumatpolylem2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑈  ∘  𝐺 )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 54 | 53 | anasss | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑈  ∘  𝐺 )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 55 | 52 54 | eqbrtrrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑙  ∈  ℕ0  ↦  ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 56 |  | simpll1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑙  ∈  ℕ0 )  →  𝑁  ∈  Fin ) | 
						
							| 57 | 19 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 58 | 57 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑙  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 59 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 60 | 9 1 2 3 59 | chpmatply1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐶 ‘ 𝑀 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 61 | 10 60 | eqeltrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐾  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 62 |  | eqid | ⊢ ( coe1 ‘ 𝐾 )  =  ( coe1 ‘ 𝐾 ) | 
						
							| 63 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 64 | 62 59 3 63 | coe1fvalcl | ⊢ ( ( 𝐾  ∈  ( Base ‘ 𝑃 )  ∧  𝑙  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 65 | 61 64 | sylan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑙  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 66 | 65 | adantlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑙  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 67 | 2 13 | ringidcl | ⊢ ( 𝐴  ∈  Ring  →   1   ∈  𝐵 ) | 
						
							| 68 | 22 67 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →   1   ∈  𝐵 ) | 
						
							| 69 | 68 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑙  ∈  ℕ0 )  →   1   ∈  𝐵 ) | 
						
							| 70 | 63 1 2 14 | matvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∈  ( Base ‘ 𝑅 )  ∧   1   ∈  𝐵 ) )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  )  ∈  𝐵 ) | 
						
							| 71 | 56 58 66 69 70 | syl22anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑙  ∈  ℕ0 )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  )  ∈  𝐵 ) | 
						
							| 72 | 71 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ∀ 𝑙  ∈  ℕ0 ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  )  ∈  𝐵 ) | 
						
							| 73 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 74 | 73 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ℕ0  ∈  V ) | 
						
							| 75 | 1 | matlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  LMod ) | 
						
							| 76 | 19 75 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  LMod ) | 
						
							| 77 | 76 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐴  ∈  LMod ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐴  ∈  LMod ) | 
						
							| 79 |  | eqidd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 80 |  | fvexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑙  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∈  V ) | 
						
							| 81 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝐴 ) )  =  ( 0g ‘ ( Scalar ‘ 𝐴 ) ) | 
						
							| 82 | 1 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 83 | 82 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 84 | 83 57 | eqeltrrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Scalar ‘ 𝐴 )  ∈  Ring ) | 
						
							| 85 | 83 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Scalar ‘ 𝐴 )  =  𝑅 ) | 
						
							| 86 | 85 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Poly1 ‘ ( Scalar ‘ 𝐴 ) )  =  ( Poly1 ‘ 𝑅 ) ) | 
						
							| 87 | 86 3 | eqtr4di | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Poly1 ‘ ( Scalar ‘ 𝐴 ) )  =  𝑃 ) | 
						
							| 88 | 87 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Base ‘ ( Poly1 ‘ ( Scalar ‘ 𝐴 ) ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 89 | 61 88 | eleqtrrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐾  ∈  ( Base ‘ ( Poly1 ‘ ( Scalar ‘ 𝐴 ) ) ) ) | 
						
							| 90 |  | eqid | ⊢ ( Poly1 ‘ ( Scalar ‘ 𝐴 ) )  =  ( Poly1 ‘ ( Scalar ‘ 𝐴 ) ) | 
						
							| 91 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ ( Scalar ‘ 𝐴 ) ) )  =  ( Base ‘ ( Poly1 ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 92 | 90 91 81 | mptcoe1fsupp | ⊢ ( ( ( Scalar ‘ 𝐴 )  ∈  Ring  ∧  𝐾  ∈  ( Base ‘ ( Poly1 ‘ ( Scalar ‘ 𝐴 ) ) ) )  →  ( 𝑙  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) )  finSupp  ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 93 | 84 89 92 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑙  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) )  finSupp  ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑙  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) )  finSupp  ( 0g ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 95 | 74 78 79 2 80 69 25 81 14 94 | mptscmfsupp0 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑙  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 96 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑙  →  ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) ) | 
						
							| 97 |  | oveq1 | ⊢ ( 𝑛  =  𝑙  →  ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) )  =  ( 𝑙 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) | 
						
							| 98 | 96 97 | oveq12d | ⊢ ( 𝑛  =  𝑙  →  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) )  =  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑙 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) | 
						
							| 99 | 98 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) )  =  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑙 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) | 
						
							| 100 | 99 | oveq2i | ⊢ ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑙 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) | 
						
							| 101 | 100 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑙 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 102 |  | fveq2 | ⊢ ( 𝑛  =  𝑙  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  =  ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 ) ) | 
						
							| 103 | 102 | oveq1d | ⊢ ( 𝑛  =  𝑙  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) ) | 
						
							| 104 | 103 97 | oveq12d | ⊢ ( 𝑛  =  𝑙  →  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) )  =  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑙 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) | 
						
							| 105 | 104 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) )  =  ( 𝑙  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑙 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) | 
						
							| 106 | 105 | oveq2i | ⊢ ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑙 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) | 
						
							| 107 | 106 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑙 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 108 | 16 17 18 23 2 24 25 45 55 72 95 101 107 | gsumply1eq | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ↔  ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) ) ) | 
						
							| 109 | 108 | biimpa | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  →  ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) ) | 
						
							| 110 | 96 103 | eqeq12d | ⊢ ( 𝑛  =  𝑙  →  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  ↔  ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) ) ) | 
						
							| 111 | 110 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  )  ↔  ∀ 𝑙  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑙 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑙 )  ∗   1  ) ) | 
						
							| 112 | 109 111 | sylibr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) | 
						
							| 113 | 112 | ex | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( ( Poly1 ‘ 𝐴 )  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) (  ·𝑠  ‘ ( Poly1 ‘ 𝐴 ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ 𝐴 ) ) ) ( var1 ‘ 𝐴 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗   1  ) ) ) |