| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chcoeffeq.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | chcoeffeq.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | chcoeffeq.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | chcoeffeq.y |  |-  Y = ( N Mat P ) | 
						
							| 5 |  | chcoeffeq.r |  |-  .X. = ( .r ` Y ) | 
						
							| 6 |  | chcoeffeq.s |  |-  .- = ( -g ` Y ) | 
						
							| 7 |  | chcoeffeq.0 |  |-  .0. = ( 0g ` Y ) | 
						
							| 8 |  | chcoeffeq.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 9 |  | chcoeffeq.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 10 |  | chcoeffeq.k |  |-  K = ( C ` M ) | 
						
							| 11 |  | chcoeffeq.g |  |-  G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) | 
						
							| 12 |  | chcoeffeq.w |  |-  W = ( Base ` Y ) | 
						
							| 13 |  | chcoeffeq.1 |  |-  .1. = ( 1r ` A ) | 
						
							| 14 |  | chcoeffeq.m |  |-  .* = ( .s ` A ) | 
						
							| 15 |  | chcoeffeq.u |  |-  U = ( N cPolyMatToMat R ) | 
						
							| 16 |  | eqid |  |-  ( Poly1 ` A ) = ( Poly1 ` A ) | 
						
							| 17 |  | eqid |  |-  ( var1 ` A ) = ( var1 ` A ) | 
						
							| 18 |  | eqid |  |-  ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) | 
						
							| 19 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 20 | 1 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 21 | 19 20 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) | 
						
							| 22 | 21 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> A e. Ring ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> A e. Ring ) | 
						
							| 24 |  | eqid |  |-  ( .s ` ( Poly1 ` A ) ) = ( .s ` ( Poly1 ` A ) ) | 
						
							| 25 |  | eqid |  |-  ( 0g ` A ) = ( 0g ` A ) | 
						
							| 26 |  | eqid |  |-  ( N ConstPolyMat R ) = ( N ConstPolyMat R ) | 
						
							| 27 |  | eqid |  |-  ( .s ` Y ) = ( .s ` Y ) | 
						
							| 28 |  | eqid |  |-  ( 1r ` Y ) = ( 1r ` Y ) | 
						
							| 29 |  | eqid |  |-  ( var1 ` R ) = ( var1 ` R ) | 
						
							| 30 |  | eqid |  |-  ( ( ( var1 ` R ) ( .s ` Y ) ( 1r ` Y ) ) .- ( T ` M ) ) = ( ( ( var1 ` R ) ( .s ` Y ) ( 1r ` Y ) ) .- ( T ` M ) ) | 
						
							| 31 |  | eqid |  |-  ( N maAdju P ) = ( N maAdju P ) | 
						
							| 32 | 1 2 3 4 8 5 6 7 11 26 27 28 29 30 31 12 16 17 24 18 15 | cpmadumatpolylem1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( U o. G ) e. ( B ^m NN0 ) ) | 
						
							| 33 | 32 | anasss |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( U o. G ) e. ( B ^m NN0 ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 11 26 | chfacfisfcpmat |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> ( N ConstPolyMat R ) ) | 
						
							| 35 | 19 34 | syl3anl2 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> G : NN0 --> ( N ConstPolyMat R ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( U o. G ) e. ( B ^m NN0 ) ) -> G : NN0 --> ( N ConstPolyMat R ) ) | 
						
							| 37 |  | fvco3 |  |-  ( ( G : NN0 --> ( N ConstPolyMat R ) /\ l e. NN0 ) -> ( ( U o. G ) ` l ) = ( U ` ( G ` l ) ) ) | 
						
							| 38 | 37 | eqcomd |  |-  ( ( G : NN0 --> ( N ConstPolyMat R ) /\ l e. NN0 ) -> ( U ` ( G ` l ) ) = ( ( U o. G ) ` l ) ) | 
						
							| 39 | 36 38 | sylan |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( U o. G ) e. ( B ^m NN0 ) ) /\ l e. NN0 ) -> ( U ` ( G ` l ) ) = ( ( U o. G ) ` l ) ) | 
						
							| 40 |  | elmapi |  |-  ( ( U o. G ) e. ( B ^m NN0 ) -> ( U o. G ) : NN0 --> B ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( U o. G ) e. ( B ^m NN0 ) ) -> ( U o. G ) : NN0 --> B ) | 
						
							| 42 | 41 | ffvelcdmda |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( U o. G ) e. ( B ^m NN0 ) ) /\ l e. NN0 ) -> ( ( U o. G ) ` l ) e. B ) | 
						
							| 43 | 39 42 | eqeltrd |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( U o. G ) e. ( B ^m NN0 ) ) /\ l e. NN0 ) -> ( U ` ( G ` l ) ) e. B ) | 
						
							| 44 | 43 | ralrimiva |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( U o. G ) e. ( B ^m NN0 ) ) -> A. l e. NN0 ( U ` ( G ` l ) ) e. B ) | 
						
							| 45 | 33 44 | mpdan |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> A. l e. NN0 ( U ` ( G ` l ) ) e. B ) | 
						
							| 46 | 19 | anim2i |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 47 | 46 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 49 | 1 2 26 15 | cpm2mf |  |-  ( ( N e. Fin /\ R e. Ring ) -> U : ( N ConstPolyMat R ) --> B ) | 
						
							| 50 | 48 49 | syl |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> U : ( N ConstPolyMat R ) --> B ) | 
						
							| 51 |  | fcompt |  |-  ( ( U : ( N ConstPolyMat R ) --> B /\ G : NN0 --> ( N ConstPolyMat R ) ) -> ( U o. G ) = ( l e. NN0 |-> ( U ` ( G ` l ) ) ) ) | 
						
							| 52 | 50 35 51 | syl2anc |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( U o. G ) = ( l e. NN0 |-> ( U ` ( G ` l ) ) ) ) | 
						
							| 53 | 1 2 3 4 8 5 6 7 11 26 27 28 29 30 31 12 16 17 24 18 15 | cpmadumatpolylem2 |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ s e. NN ) /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( U o. G ) finSupp ( 0g ` A ) ) | 
						
							| 54 | 53 | anasss |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( U o. G ) finSupp ( 0g ` A ) ) | 
						
							| 55 | 52 54 | eqbrtrrd |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( l e. NN0 |-> ( U ` ( G ` l ) ) ) finSupp ( 0g ` A ) ) | 
						
							| 56 |  | simpll1 |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ l e. NN0 ) -> N e. Fin ) | 
						
							| 57 | 19 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R e. Ring ) | 
						
							| 58 | 57 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ l e. NN0 ) -> R e. Ring ) | 
						
							| 59 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 60 | 9 1 2 3 59 | chpmatply1 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. ( Base ` P ) ) | 
						
							| 61 | 10 60 | eqeltrid |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> K e. ( Base ` P ) ) | 
						
							| 62 |  | eqid |  |-  ( coe1 ` K ) = ( coe1 ` K ) | 
						
							| 63 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 64 | 62 59 3 63 | coe1fvalcl |  |-  ( ( K e. ( Base ` P ) /\ l e. NN0 ) -> ( ( coe1 ` K ) ` l ) e. ( Base ` R ) ) | 
						
							| 65 | 61 64 | sylan |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ l e. NN0 ) -> ( ( coe1 ` K ) ` l ) e. ( Base ` R ) ) | 
						
							| 66 | 65 | adantlr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ l e. NN0 ) -> ( ( coe1 ` K ) ` l ) e. ( Base ` R ) ) | 
						
							| 67 | 2 13 | ringidcl |  |-  ( A e. Ring -> .1. e. B ) | 
						
							| 68 | 22 67 | syl |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> .1. e. B ) | 
						
							| 69 | 68 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ l e. NN0 ) -> .1. e. B ) | 
						
							| 70 | 63 1 2 14 | matvscl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( ( ( coe1 ` K ) ` l ) e. ( Base ` R ) /\ .1. e. B ) ) -> ( ( ( coe1 ` K ) ` l ) .* .1. ) e. B ) | 
						
							| 71 | 56 58 66 69 70 | syl22anc |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ l e. NN0 ) -> ( ( ( coe1 ` K ) ` l ) .* .1. ) e. B ) | 
						
							| 72 | 71 | ralrimiva |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> A. l e. NN0 ( ( ( coe1 ` K ) ` l ) .* .1. ) e. B ) | 
						
							| 73 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 74 | 73 | a1i |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> NN0 e. _V ) | 
						
							| 75 | 1 | matlmod |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) | 
						
							| 76 | 19 75 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> A e. LMod ) | 
						
							| 77 | 76 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> A e. LMod ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> A e. LMod ) | 
						
							| 79 |  | eqidd |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( Scalar ` A ) = ( Scalar ` A ) ) | 
						
							| 80 |  | fvexd |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ l e. NN0 ) -> ( ( coe1 ` K ) ` l ) e. _V ) | 
						
							| 81 |  | eqid |  |-  ( 0g ` ( Scalar ` A ) ) = ( 0g ` ( Scalar ` A ) ) | 
						
							| 82 | 1 | matsca2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> R = ( Scalar ` A ) ) | 
						
							| 83 | 82 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R = ( Scalar ` A ) ) | 
						
							| 84 | 83 57 | eqeltrrd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Scalar ` A ) e. Ring ) | 
						
							| 85 | 83 | eqcomd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Scalar ` A ) = R ) | 
						
							| 86 | 85 | fveq2d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Poly1 ` ( Scalar ` A ) ) = ( Poly1 ` R ) ) | 
						
							| 87 | 86 3 | eqtr4di |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Poly1 ` ( Scalar ` A ) ) = P ) | 
						
							| 88 | 87 | fveq2d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Base ` ( Poly1 ` ( Scalar ` A ) ) ) = ( Base ` P ) ) | 
						
							| 89 | 61 88 | eleqtrrd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> K e. ( Base ` ( Poly1 ` ( Scalar ` A ) ) ) ) | 
						
							| 90 |  | eqid |  |-  ( Poly1 ` ( Scalar ` A ) ) = ( Poly1 ` ( Scalar ` A ) ) | 
						
							| 91 |  | eqid |  |-  ( Base ` ( Poly1 ` ( Scalar ` A ) ) ) = ( Base ` ( Poly1 ` ( Scalar ` A ) ) ) | 
						
							| 92 | 90 91 81 | mptcoe1fsupp |  |-  ( ( ( Scalar ` A ) e. Ring /\ K e. ( Base ` ( Poly1 ` ( Scalar ` A ) ) ) ) -> ( l e. NN0 |-> ( ( coe1 ` K ) ` l ) ) finSupp ( 0g ` ( Scalar ` A ) ) ) | 
						
							| 93 | 84 89 92 | syl2anc |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( l e. NN0 |-> ( ( coe1 ` K ) ` l ) ) finSupp ( 0g ` ( Scalar ` A ) ) ) | 
						
							| 94 | 93 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( l e. NN0 |-> ( ( coe1 ` K ) ` l ) ) finSupp ( 0g ` ( Scalar ` A ) ) ) | 
						
							| 95 | 74 78 79 2 80 69 25 81 14 94 | mptscmfsupp0 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( l e. NN0 |-> ( ( ( coe1 ` K ) ` l ) .* .1. ) ) finSupp ( 0g ` A ) ) | 
						
							| 96 |  | 2fveq3 |  |-  ( n = l -> ( U ` ( G ` n ) ) = ( U ` ( G ` l ) ) ) | 
						
							| 97 |  | oveq1 |  |-  ( n = l -> ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) = ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) | 
						
							| 98 | 96 97 | oveq12d |  |-  ( n = l -> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) = ( ( U ` ( G ` l ) ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) | 
						
							| 99 | 98 | cbvmptv |  |-  ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) = ( l e. NN0 |-> ( ( U ` ( G ` l ) ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) | 
						
							| 100 | 99 | oveq2i |  |-  ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( l e. NN0 |-> ( ( U ` ( G ` l ) ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) | 
						
							| 101 | 100 | a1i |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( l e. NN0 |-> ( ( U ` ( G ` l ) ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 102 |  | fveq2 |  |-  ( n = l -> ( ( coe1 ` K ) ` n ) = ( ( coe1 ` K ) ` l ) ) | 
						
							| 103 | 102 | oveq1d |  |-  ( n = l -> ( ( ( coe1 ` K ) ` n ) .* .1. ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) | 
						
							| 104 | 103 97 | oveq12d |  |-  ( n = l -> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) = ( ( ( ( coe1 ` K ) ` l ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) | 
						
							| 105 | 104 | cbvmptv |  |-  ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) = ( l e. NN0 |-> ( ( ( ( coe1 ` K ) ` l ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) | 
						
							| 106 | 105 | oveq2i |  |-  ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( l e. NN0 |-> ( ( ( ( coe1 ` K ) ` l ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) | 
						
							| 107 | 106 | a1i |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( l e. NN0 |-> ( ( ( ( coe1 ` K ) ` l ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( l ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 108 | 16 17 18 23 2 24 25 45 55 72 95 101 107 | gsumply1eq |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) <-> A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) ) | 
						
							| 109 | 108 | biimpa |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) ) -> A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) | 
						
							| 110 | 96 103 | eqeq12d |  |-  ( n = l -> ( ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) <-> ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) ) | 
						
							| 111 | 110 | cbvralvw |  |-  ( A. n e. NN0 ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) <-> A. l e. NN0 ( U ` ( G ` l ) ) = ( ( ( coe1 ` K ) ` l ) .* .1. ) ) | 
						
							| 112 | 109 111 | sylibr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) ) -> A. n e. NN0 ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) ) | 
						
							| 113 | 112 | ex |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( U ` ( G ` n ) ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) = ( ( Poly1 ` A ) gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* .1. ) ( .s ` ( Poly1 ` A ) ) ( n ( .g ` ( mulGrp ` ( Poly1 ` A ) ) ) ( var1 ` A ) ) ) ) ) -> A. n e. NN0 ( U ` ( G ` n ) ) = ( ( ( coe1 ` K ) ` n ) .* .1. ) ) ) |