| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadumatpoly.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cpmadumatpoly.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cpmadumatpoly.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cpmadumatpoly.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cpmadumatpoly.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 6 |  | cpmadumatpoly.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 7 |  | cpmadumatpoly.m0 | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 8 |  | cpmadumatpoly.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 9 |  | cpmadumatpoly.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 10 |  | cpmadumatpoly.s | ⊢ 𝑆  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 11 |  | cpmadumatpoly.m1 | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 12 |  | cpmadumatpoly.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 13 |  | cpmadumatpoly.z | ⊢ 𝑍  =  ( var1 ‘ 𝑅 ) | 
						
							| 14 |  | cpmadumatpoly.d | ⊢ 𝐷  =  ( ( 𝑍  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 15 |  | cpmadumatpoly.j | ⊢ 𝐽  =  ( 𝑁  maAdju  𝑃 ) | 
						
							| 16 |  | cpmadumatpoly.w | ⊢ 𝑊  =  ( Base ‘ 𝑌 ) | 
						
							| 17 |  | cpmadumatpoly.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 18 |  | cpmadumatpoly.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 19 |  | cpmadumatpoly.m2 | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 20 |  | cpmadumatpoly.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 21 |  | cpmadumatpoly.u | ⊢ 𝑈  =  ( 𝑁  cPolyMatToMat  𝑅 ) | 
						
							| 22 |  | fvexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 0g ‘ 𝐴 )  ∈  V ) | 
						
							| 23 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 24 | 23 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 25 | 24 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 27 | 10 3 4 | 0elcpmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝑌 )  ∈  𝑆 ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 0g ‘ 𝑌 )  ∈  𝑆 ) | 
						
							| 29 | 1 2 3 4 6 7 8 5 9 10 | chfacfisfcpmat | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺 : ℕ0 ⟶ 𝑆 ) | 
						
							| 30 | 23 29 | syl3anl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺 : ℕ0 ⟶ 𝑆 ) | 
						
							| 31 | 30 | anassrs | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝐺 : ℕ0 ⟶ 𝑆 ) | 
						
							| 32 | 1 2 10 21 | cpm2mf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑈 : 𝑆 ⟶ 𝐵 ) | 
						
							| 33 | 26 32 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑈 : 𝑆 ⟶ 𝐵 ) | 
						
							| 34 |  | ssidd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑆  ⊆  𝑆 ) | 
						
							| 35 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 36 | 35 | a1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ℕ0  ∈  V ) | 
						
							| 37 | 10 | ovexi | ⊢ 𝑆  ∈  V | 
						
							| 38 | 37 | a1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑆  ∈  V ) | 
						
							| 39 | 1 2 3 4 6 7 8 5 9 | chfacffsupp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺  finSupp  ( 0g ‘ 𝑌 ) ) | 
						
							| 40 | 39 | anassrs | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝐺  finSupp  ( 0g ‘ 𝑌 ) ) | 
						
							| 41 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 42 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 43 | 1 21 3 4 41 42 | m2cpminv0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑈 ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 44 | 23 43 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑈 ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 45 | 44 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑈 ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 46 | 45 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑈 ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 47 | 22 28 31 33 34 36 38 40 46 | fsuppcor | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑈  ∘  𝐺 )  finSupp  ( 0g ‘ 𝐴 ) ) |