| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chfacfisf.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | chfacfisf.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | chfacfisf.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | chfacfisf.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | chfacfisf.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 6 |  | chfacfisf.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 7 |  | chfacfisf.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 8 |  | chfacfisf.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 9 |  | chfacfisf.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 10 |  | chfacfisfcpmat.s | ⊢ 𝑆  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 11 | 10 3 4 | cpmatsubgpmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( SubGrp ‘ 𝑌 ) ) | 
						
							| 12 | 11 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑆  ∈  ( SubGrp ‘ 𝑌 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑆  ∈  ( SubGrp ‘ 𝑌 ) ) | 
						
							| 14 |  | subgsubm | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝑌 )  →  𝑆  ∈  ( SubMnd ‘ 𝑌 ) ) | 
						
							| 15 | 7 | subm0cl | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝑌 )  →   0   ∈  𝑆 ) | 
						
							| 16 | 12 14 15 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →   0   ∈  𝑆 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →   0   ∈  𝑆 ) | 
						
							| 18 | 10 3 4 | cpmatsrgpmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑆  ∈  ( SubRing ‘ 𝑌 ) ) | 
						
							| 19 | 18 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑆  ∈  ( SubRing ‘ 𝑌 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑆  ∈  ( SubRing ‘ 𝑌 ) ) | 
						
							| 21 | 10 8 1 2 | m2cpm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  𝑆 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ 𝑀 )  ∈  𝑆 ) | 
						
							| 23 |  | 3simpa | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 24 |  | elmapi | ⊢ ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 26 |  | nnnn0 | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℕ0 ) | 
						
							| 27 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 28 | 26 27 | eleqtrdi | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 29 |  | eluzfz1 | ⊢ ( 𝑠  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝑠  ∈  ℕ  →  0  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  0  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 32 | 25 31 | ffvelcdmd | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑏 ‘ 0 )  ∈  𝐵 ) | 
						
							| 33 | 23 32 | anim12i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑏 ‘ 0 )  ∈  𝐵 ) ) | 
						
							| 34 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ 0 )  ∈  𝐵 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑏 ‘ 0 )  ∈  𝐵 ) ) | 
						
							| 35 | 33 34 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ 0 )  ∈  𝐵 ) ) | 
						
							| 36 | 10 8 1 2 | m2cpm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ 0 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  ∈  𝑆 ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  ∈  𝑆 ) | 
						
							| 38 | 5 | subrgmcl | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ 𝑌 )  ∧  ( 𝑇 ‘ 𝑀 )  ∈  𝑆  ∧  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  ∈  𝑆 )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  ∈  𝑆 ) | 
						
							| 39 | 20 22 37 38 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  ∈  𝑆 ) | 
						
							| 40 | 6 | subgsubcl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝑌 )  ∧   0   ∈  𝑆  ∧  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  ∈  𝑆 )  →  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  ∈  𝑆 ) | 
						
							| 41 | 13 17 39 40 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  ∈  𝑆 ) | 
						
							| 42 | 41 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  =  0 )  →  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  ∈  𝑆 ) | 
						
							| 43 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 44 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 45 | 25 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 46 |  | eluzfz2 | ⊢ ( 𝑠  ∈  ( ℤ≥ ‘ 0 )  →  𝑠  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 47 | 28 46 | syl | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 48 | 47 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑠  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 49 | 45 48 | ffvelcdmd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑏 ‘ 𝑠 )  ∈  𝐵 ) | 
						
							| 50 | 10 8 1 2 | m2cpm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ 𝑠 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  ∈  𝑆 ) | 
						
							| 51 | 43 44 49 50 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  ∈  𝑆 ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  ∈  𝑆 ) | 
						
							| 53 | 52 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  =  ( 𝑠  +  1 ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  ∈  𝑆 ) | 
						
							| 54 | 17 | ad4antr | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ( 𝑠  +  1 )  <  𝑛 )  →   0   ∈  𝑆 ) | 
						
							| 55 |  | nn0re | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℝ ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℝ ) | 
						
							| 57 |  | peano2nn | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  +  1 )  ∈  ℕ ) | 
						
							| 58 | 57 | nnred | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  +  1 )  ∈  ℝ ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑠  +  1 )  ∈  ℝ ) | 
						
							| 60 | 56 59 | lenltd | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ≤  ( 𝑠  +  1 )  ↔  ¬  ( 𝑠  +  1 )  <  𝑛 ) ) | 
						
							| 61 |  | nesym | ⊢ ( ( 𝑠  +  1 )  ≠  𝑛  ↔  ¬  𝑛  =  ( 𝑠  +  1 ) ) | 
						
							| 62 |  | ltlen | ⊢ ( ( 𝑛  ∈  ℝ  ∧  ( 𝑠  +  1 )  ∈  ℝ )  →  ( 𝑛  <  ( 𝑠  +  1 )  ↔  ( 𝑛  ≤  ( 𝑠  +  1 )  ∧  ( 𝑠  +  1 )  ≠  𝑛 ) ) ) | 
						
							| 63 | 55 58 62 | syl2anr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  <  ( 𝑠  +  1 )  ↔  ( 𝑛  ≤  ( 𝑠  +  1 )  ∧  ( 𝑠  +  1 )  ≠  𝑛 ) ) ) | 
						
							| 64 | 63 | biimprd | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ≤  ( 𝑠  +  1 )  ∧  ( 𝑠  +  1 )  ≠  𝑛 )  →  𝑛  <  ( 𝑠  +  1 ) ) ) | 
						
							| 65 | 64 | expcomd | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑠  +  1 )  ≠  𝑛  →  ( 𝑛  ≤  ( 𝑠  +  1 )  →  𝑛  <  ( 𝑠  +  1 ) ) ) ) | 
						
							| 66 | 61 65 | biimtrrid | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( ¬  𝑛  =  ( 𝑠  +  1 )  →  ( 𝑛  ≤  ( 𝑠  +  1 )  →  𝑛  <  ( 𝑠  +  1 ) ) ) ) | 
						
							| 67 | 66 | com23 | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ≤  ( 𝑠  +  1 )  →  ( ¬  𝑛  =  ( 𝑠  +  1 )  →  𝑛  <  ( 𝑠  +  1 ) ) ) ) | 
						
							| 68 | 60 67 | sylbird | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( ¬  ( 𝑠  +  1 )  <  𝑛  →  ( ¬  𝑛  =  ( 𝑠  +  1 )  →  𝑛  <  ( 𝑠  +  1 ) ) ) ) | 
						
							| 69 | 68 | impcomd | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( ( ¬  𝑛  =  ( 𝑠  +  1 )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  𝑛  <  ( 𝑠  +  1 ) ) ) | 
						
							| 70 | 69 | ex | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑛  ∈  ℕ0  →  ( ( ¬  𝑛  =  ( 𝑠  +  1 )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  𝑛  <  ( 𝑠  +  1 ) ) ) ) | 
						
							| 71 | 70 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑛  ∈  ℕ0  →  ( ( ¬  𝑛  =  ( 𝑠  +  1 )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  𝑛  <  ( 𝑠  +  1 ) ) ) ) | 
						
							| 72 | 71 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ¬  𝑛  =  ( 𝑠  +  1 )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  𝑛  <  ( 𝑠  +  1 ) ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  →  ( ( ¬  𝑛  =  ( 𝑠  +  1 )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  𝑛  <  ( 𝑠  +  1 ) ) ) | 
						
							| 74 | 12 | ad4antr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑆  ∈  ( SubGrp ‘ 𝑌 ) ) | 
						
							| 75 | 23 | ad4antr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 76 | 25 | ad4antlr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 77 |  | neqne | ⊢ ( ¬  𝑛  =  0  →  𝑛  ≠  0 ) | 
						
							| 78 | 77 | anim2i | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ¬  𝑛  =  0 )  →  ( 𝑛  ∈  ℕ0  ∧  𝑛  ≠  0 ) ) | 
						
							| 79 |  | elnnne0 | ⊢ ( 𝑛  ∈  ℕ  ↔  ( 𝑛  ∈  ℕ0  ∧  𝑛  ≠  0 ) ) | 
						
							| 80 | 78 79 | sylibr | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ¬  𝑛  =  0 )  →  𝑛  ∈  ℕ ) | 
						
							| 81 |  | nnm1nn0 | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  −  1 )  ∈  ℕ0 ) | 
						
							| 82 | 80 81 | syl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ¬  𝑛  =  0 )  →  ( 𝑛  −  1 )  ∈  ℕ0 ) | 
						
							| 83 | 82 | ad4ant23 | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( 𝑛  −  1 )  ∈  ℕ0 ) | 
						
							| 84 | 26 | adantr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 85 | 84 | ad4antlr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 86 | 63 | simprbda | ⊢ ( ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑛  ≤  ( 𝑠  +  1 ) ) | 
						
							| 87 | 56 | adantr | ⊢ ( ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑛  ∈  ℝ ) | 
						
							| 88 |  | 1red | ⊢ ( ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  1  ∈  ℝ ) | 
						
							| 89 |  | nnre | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℝ ) | 
						
							| 90 | 89 | ad2antrr | ⊢ ( ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑠  ∈  ℝ ) | 
						
							| 91 | 87 88 90 | lesubaddd | ⊢ ( ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( ( 𝑛  −  1 )  ≤  𝑠  ↔  𝑛  ≤  ( 𝑠  +  1 ) ) ) | 
						
							| 92 | 86 91 | mpbird | ⊢ ( ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( 𝑛  −  1 )  ≤  𝑠 ) | 
						
							| 93 | 92 | exp31 | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑛  ∈  ℕ0  →  ( 𝑛  <  ( 𝑠  +  1 )  →  ( 𝑛  −  1 )  ≤  𝑠 ) ) ) | 
						
							| 94 | 93 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑛  ∈  ℕ0  →  ( 𝑛  <  ( 𝑠  +  1 )  →  ( 𝑛  −  1 )  ≤  𝑠 ) ) ) | 
						
							| 95 | 94 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  <  ( 𝑠  +  1 )  →  ( 𝑛  −  1 )  ≤  𝑠 ) ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  →  ( 𝑛  <  ( 𝑠  +  1 )  →  ( 𝑛  −  1 )  ≤  𝑠 ) ) | 
						
							| 97 | 96 | imp | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( 𝑛  −  1 )  ≤  𝑠 ) | 
						
							| 98 |  | elfz2nn0 | ⊢ ( ( 𝑛  −  1 )  ∈  ( 0 ... 𝑠 )  ↔  ( ( 𝑛  −  1 )  ∈  ℕ0  ∧  𝑠  ∈  ℕ0  ∧  ( 𝑛  −  1 )  ≤  𝑠 ) ) | 
						
							| 99 | 83 85 97 98 | syl3anbrc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( 𝑛  −  1 )  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 100 | 76 99 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( 𝑏 ‘ ( 𝑛  −  1 ) )  ∈  𝐵 ) | 
						
							| 101 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ ( 𝑛  −  1 ) )  ∈  𝐵 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑏 ‘ ( 𝑛  −  1 ) )  ∈  𝐵 ) ) | 
						
							| 102 | 75 100 101 | sylanbrc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ ( 𝑛  −  1 ) )  ∈  𝐵 ) ) | 
						
							| 103 | 10 8 1 2 | m2cpm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ ( 𝑛  −  1 ) )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  ∈  𝑆 ) | 
						
							| 104 | 102 103 | syl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  ∈  𝑆 ) | 
						
							| 105 | 20 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑆  ∈  ( SubRing ‘ 𝑌 ) ) | 
						
							| 106 | 22 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( 𝑇 ‘ 𝑀 )  ∈  𝑆 ) | 
						
							| 107 | 23 84 | anim12i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑠  ∈  ℕ0 ) ) | 
						
							| 108 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑠  ∈  ℕ0 ) ) | 
						
							| 109 | 107 108 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 ) ) | 
						
							| 110 | 109 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 ) ) | 
						
							| 111 | 110 | simp1d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑁  ∈  Fin ) | 
						
							| 112 | 110 | simp2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑅  ∈  Ring ) | 
						
							| 113 | 45 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 114 |  | simplr | ⊢ ( ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 115 | 26 | ad2antrr | ⊢ ( ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 116 |  | nn0z | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℤ ) | 
						
							| 117 |  | nnz | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℤ ) | 
						
							| 118 |  | zleltp1 | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑠  ∈  ℤ )  →  ( 𝑛  ≤  𝑠  ↔  𝑛  <  ( 𝑠  +  1 ) ) ) | 
						
							| 119 | 116 117 118 | syl2anr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ≤  𝑠  ↔  𝑛  <  ( 𝑠  +  1 ) ) ) | 
						
							| 120 | 119 | biimpar | ⊢ ( ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑛  ≤  𝑠 ) | 
						
							| 121 |  | elfz2nn0 | ⊢ ( 𝑛  ∈  ( 0 ... 𝑠 )  ↔  ( 𝑛  ∈  ℕ0  ∧  𝑠  ∈  ℕ0  ∧  𝑛  ≤  𝑠 ) ) | 
						
							| 122 | 114 115 120 121 | syl3anbrc | ⊢ ( ( ( 𝑠  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑛  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 123 | 122 | exp31 | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑛  ∈  ℕ0  →  ( 𝑛  <  ( 𝑠  +  1 )  →  𝑛  ∈  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 124 | 123 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑛  ∈  ℕ0  →  ( 𝑛  <  ( 𝑠  +  1 )  →  𝑛  ∈  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 125 | 124 | imp31 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  𝑛  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 126 | 113 125 | ffvelcdmd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( 𝑏 ‘ 𝑛 )  ∈  𝐵 ) | 
						
							| 127 | 10 8 1 2 | m2cpm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ 𝑛 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) )  ∈  𝑆 ) | 
						
							| 128 | 111 112 126 127 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) )  ∈  𝑆 ) | 
						
							| 129 | 5 | subrgmcl | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ 𝑌 )  ∧  ( 𝑇 ‘ 𝑀 )  ∈  𝑆  ∧  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) )  ∈  𝑆 )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  ∈  𝑆 ) | 
						
							| 130 | 105 106 128 129 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  ∈  𝑆 ) | 
						
							| 131 | 130 | adantlr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  ∈  𝑆 ) | 
						
							| 132 | 6 | subgsubcl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝑌 )  ∧  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  ∈  𝑆  ∧  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  ∈  𝑆 )  →  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) )  ∈  𝑆 ) | 
						
							| 133 | 74 104 131 132 | syl3anc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  <  ( 𝑠  +  1 ) )  →  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) )  ∈  𝑆 ) | 
						
							| 134 | 133 | ex | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  →  ( 𝑛  <  ( 𝑠  +  1 )  →  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) )  ∈  𝑆 ) ) | 
						
							| 135 | 73 134 | syld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  →  ( ( ¬  𝑛  =  ( 𝑠  +  1 )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) )  ∈  𝑆 ) ) | 
						
							| 136 | 135 | impl | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) )  ∈  𝑆 ) | 
						
							| 137 | 54 136 | ifclda | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  →  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) )  ∈  𝑆 ) | 
						
							| 138 | 53 137 | ifclda | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ¬  𝑛  =  0 )  →  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  ∈  𝑆 ) | 
						
							| 139 | 42 138 | ifclda | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  →  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  ∈  𝑆 ) | 
						
							| 140 | 139 9 | fmptd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺 : ℕ0 ⟶ 𝑆 ) |