| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadurid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cpmadurid.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cpmadurid.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 4 |  | cpmadurid.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 5 |  | cpmadurid.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 6 |  | cpmadurid.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | cpmadurid.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 8 |  | cpmadurid.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 9 |  | cpmadurid.m1 | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 10 |  | cpmadurid.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 11 |  | cpmadurid.i | ⊢ 𝐼  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 12 |  | cpmadurid.j | ⊢ 𝐽  =  ( 𝑁  maAdju  𝑃 ) | 
						
							| 13 |  | cpmadurid.m2 | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 14 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 15 | 1 2 4 5 6 7 8 9 10 11 | chmatcl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝐼  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 16 | 14 15 | syl3an2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐼  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 17 | 4 | ply1crng | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) | 
						
							| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  CRing ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 20 |  | eqid | ⊢ ( 𝑁  maDet  𝑃 )  =  ( 𝑁  maDet  𝑃 ) | 
						
							| 21 | 5 19 12 20 10 13 9 | madurid | ⊢ ( ( 𝐼  ∈  ( Base ‘ 𝑌 )  ∧  𝑃  ∈  CRing )  →  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( ( ( 𝑁  maDet  𝑃 ) ‘ 𝐼 )  ·   1  ) ) | 
						
							| 22 | 16 18 21 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( ( ( 𝑁  maDet  𝑃 ) ‘ 𝐼 )  ·   1  ) ) | 
						
							| 23 | 3 1 2 4 5 20 8 6 9 7 10 | chpmatval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐶 ‘ 𝑀 )  =  ( ( 𝑁  maDet  𝑃 ) ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) ) | 
						
							| 24 | 11 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐼  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 25 | 24 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  =  𝐼 ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑁  maDet  𝑃 ) ‘ ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) )  =  ( ( 𝑁  maDet  𝑃 ) ‘ 𝐼 ) ) | 
						
							| 27 | 23 26 | eqtr2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑁  maDet  𝑃 ) ‘ 𝐼 )  =  ( 𝐶 ‘ 𝑀 ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( ( 𝑁  maDet  𝑃 ) ‘ 𝐼 )  ·   1  )  =  ( ( 𝐶 ‘ 𝑀 )  ·   1  ) ) | 
						
							| 29 | 22 28 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( ( 𝐶 ‘ 𝑀 )  ·   1  ) ) |