| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadurid.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | cpmadurid.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | cpmadurid.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 4 |  | cpmadurid.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | cpmadurid.y |  |-  Y = ( N Mat P ) | 
						
							| 6 |  | cpmadurid.x |  |-  X = ( var1 ` R ) | 
						
							| 7 |  | cpmadurid.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 8 |  | cpmadurid.s |  |-  .- = ( -g ` Y ) | 
						
							| 9 |  | cpmadurid.m1 |  |-  .x. = ( .s ` Y ) | 
						
							| 10 |  | cpmadurid.1 |  |-  .1. = ( 1r ` Y ) | 
						
							| 11 |  | cpmadurid.i |  |-  I = ( ( X .x. .1. ) .- ( T ` M ) ) | 
						
							| 12 |  | cpmadurid.j |  |-  J = ( N maAdju P ) | 
						
							| 13 |  | cpmadurid.m2 |  |-  .X. = ( .r ` Y ) | 
						
							| 14 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 15 | 1 2 4 5 6 7 8 9 10 11 | chmatcl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> I e. ( Base ` Y ) ) | 
						
							| 16 | 14 15 | syl3an2 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> I e. ( Base ` Y ) ) | 
						
							| 17 | 4 | ply1crng |  |-  ( R e. CRing -> P e. CRing ) | 
						
							| 18 | 17 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P e. CRing ) | 
						
							| 19 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 20 |  | eqid |  |-  ( N maDet P ) = ( N maDet P ) | 
						
							| 21 | 5 19 12 20 10 13 9 | madurid |  |-  ( ( I e. ( Base ` Y ) /\ P e. CRing ) -> ( I .X. ( J ` I ) ) = ( ( ( N maDet P ) ` I ) .x. .1. ) ) | 
						
							| 22 | 16 18 21 | syl2anc |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I .X. ( J ` I ) ) = ( ( ( N maDet P ) ` I ) .x. .1. ) ) | 
						
							| 23 | 3 1 2 4 5 20 8 6 9 7 10 | chpmatval |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) | 
						
							| 24 | 11 | a1i |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> I = ( ( X .x. .1. ) .- ( T ` M ) ) ) | 
						
							| 25 | 24 | eqcomd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( X .x. .1. ) .- ( T ` M ) ) = I ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( N maDet P ) ` ( ( X .x. .1. ) .- ( T ` M ) ) ) = ( ( N maDet P ) ` I ) ) | 
						
							| 27 | 23 26 | eqtr2d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( N maDet P ) ` I ) = ( C ` M ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( ( N maDet P ) ` I ) .x. .1. ) = ( ( C ` M ) .x. .1. ) ) | 
						
							| 29 | 22 28 | eqtrd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I .X. ( J ` I ) ) = ( ( C ` M ) .x. .1. ) ) |