| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayleyhamilton0.a |  | 
						
							| 2 |  | cayleyhamilton0.b |  | 
						
							| 3 |  | cayleyhamilton0.0 |  | 
						
							| 4 |  | cayleyhamilton0.1 |  | 
						
							| 5 |  | cayleyhamilton0.m |  | 
						
							| 6 |  | cayleyhamilton0.e1 |  | 
						
							| 7 |  | cayleyhamilton0.c |  | 
						
							| 8 |  | cayleyhamilton0.k |  | 
						
							| 9 |  | cayleyhamilton0.p |  | 
						
							| 10 |  | cayleyhamilton0.y |  | 
						
							| 11 |  | cayleyhamilton0.r |  | 
						
							| 12 |  | cayleyhamilton0.s |  | 
						
							| 13 |  | cayleyhamilton0.z |  | 
						
							| 14 |  | cayleyhamilton0.w |  | 
						
							| 15 |  | cayleyhamilton0.e2 |  | 
						
							| 16 |  | cayleyhamilton0.t |  | 
						
							| 17 |  | cayleyhamilton0.g |  | 
						
							| 18 |  | cayleyhamilton0.u |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 1 2 9 10 11 12 13 16 7 19 17 14 4 5 18 6 15 | cayhamlem4 |  | 
						
							| 21 | 8 | eqcomi |  | 
						
							| 22 | 21 | a1i |  | 
						
							| 23 | 22 | fveq1d |  | 
						
							| 24 | 23 | oveq1d |  | 
						
							| 25 | 24 | mpteq2dva |  | 
						
							| 26 | 25 | oveq2d |  | 
						
							| 27 | 26 | eqeq1d |  | 
						
							| 28 | 27 | biimpa |  | 
						
							| 29 |  | oveq1 |  | 
						
							| 30 |  | fveq2 |  | 
						
							| 31 | 29 30 | oveq12d |  | 
						
							| 32 | 31 | cbvmptv |  | 
						
							| 33 | 32 | oveq2i |  | 
						
							| 34 | 1 2 9 10 11 12 13 16 17 15 | cayhamlem1 |  | 
						
							| 35 | 33 34 | eqtrid |  | 
						
							| 36 |  | fveq2 |  | 
						
							| 37 |  | crngring |  | 
						
							| 38 | 37 | anim2i |  | 
						
							| 39 | 38 | 3adant3 |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 1 18 9 10 40 13 | m2cpminv0 |  | 
						
							| 42 | 39 41 | syl |  | 
						
							| 43 | 42 3 | eqtr4di |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 | 36 44 | sylan9eqr |  | 
						
							| 46 | 35 45 | mpdan |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 | 28 47 | eqtrd |  | 
						
							| 49 | 48 | ex |  | 
						
							| 50 | 49 | rexlimdvva |  | 
						
							| 51 | 20 50 | mpd |  |