| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayleyhamilton0.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cayleyhamilton0.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cayleyhamilton0.0 | ⊢  0   =  ( 0g ‘ 𝐴 ) | 
						
							| 4 |  | cayleyhamilton0.1 | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 5 |  | cayleyhamilton0.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 6 |  | cayleyhamilton0.e1 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝐴 ) ) | 
						
							| 7 |  | cayleyhamilton0.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 8 |  | cayleyhamilton0.k | ⊢ 𝐾  =  ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) | 
						
							| 9 |  | cayleyhamilton0.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 10 |  | cayleyhamilton0.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 11 |  | cayleyhamilton0.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 12 |  | cayleyhamilton0.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 13 |  | cayleyhamilton0.z | ⊢ 𝑍  =  ( 0g ‘ 𝑌 ) | 
						
							| 14 |  | cayleyhamilton0.w | ⊢ 𝑊  =  ( Base ‘ 𝑌 ) | 
						
							| 15 |  | cayleyhamilton0.e2 | ⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 16 |  | cayleyhamilton0.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 17 |  | cayleyhamilton0.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  ( 𝑍  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,  𝑍 ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 18 |  | cayleyhamilton0.u | ⊢ 𝑈  =  ( 𝑁  cPolyMatToMat  𝑅 ) | 
						
							| 19 |  | eqid | ⊢ ( 𝐶 ‘ 𝑀 )  =  ( 𝐶 ‘ 𝑀 ) | 
						
							| 20 | 1 2 9 10 11 12 13 16 7 19 17 14 4 5 18 6 15 | cayhamlem4 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 21 | 8 | eqcomi | ⊢ ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) )  =  𝐾 | 
						
							| 22 | 21 | a1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) )  =  𝐾 ) | 
						
							| 23 | 22 | fveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 )  =  ( 𝐾 ‘ 𝑛 ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) )  =  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) | 
						
							| 25 | 24 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) )  ↔  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 28 | 27 | biimpa | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 29 |  | oveq1 | ⊢ ( 𝑛  =  𝑙  →  ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  =  ( 𝑙 𝐸 ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑛  =  𝑙  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑙 ) ) | 
						
							| 31 | 29 30 | oveq12d | ⊢ ( 𝑛  =  𝑙  →  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) )  =  ( ( 𝑙 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑙 ) ) ) | 
						
							| 32 | 31 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) )  =  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑙 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑙 ) ) ) | 
						
							| 33 | 32 | oveq2i | ⊢ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) )  =  ( 𝑌  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑙 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑙 ) ) ) ) | 
						
							| 34 | 1 2 9 10 11 12 13 16 17 15 | cayhamlem1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑙 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑙 ) ) ) )  =  𝑍 ) | 
						
							| 35 | 33 34 | eqtrid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) )  =  𝑍 ) | 
						
							| 36 |  | fveq2 | ⊢ ( ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) )  =  𝑍  →  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) )  =  ( 𝑈 ‘ 𝑍 ) ) | 
						
							| 37 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 38 | 37 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 39 | 38 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 40 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 41 | 1 18 9 10 40 13 | m2cpminv0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑈 ‘ 𝑍 )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 42 | 39 41 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑈 ‘ 𝑍 )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 43 | 42 3 | eqtr4di | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑈 ‘ 𝑍 )  =   0  ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑈 ‘ 𝑍 )  =   0  ) | 
						
							| 45 | 36 44 | sylan9eqr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) )  =  𝑍 )  →  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) )  =   0  ) | 
						
							| 46 | 35 45 | mpdan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) )  =   0  ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) )  =   0  ) | 
						
							| 48 | 28 47 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0  ) | 
						
							| 49 | 48 | ex | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0  ) ) | 
						
							| 50 | 49 | rexlimdvva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝑈 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑛 ) ) ) ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0  ) ) | 
						
							| 51 | 20 50 | mpd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0  ) |