| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayhamlem1.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cayhamlem1.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cayhamlem1.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cayhamlem1.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cayhamlem1.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 6 |  | cayhamlem1.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 7 |  | cayhamlem1.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 8 |  | cayhamlem1.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 9 |  | cayhamlem1.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 10 |  | cayhamlem1.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 11 | chfacfpmmulgsum2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 13 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ∈  ℤ ) | 
						
							| 14 | 13 | zcnd | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ∈  ℂ ) | 
						
							| 15 |  | pncan1 | ⊢ ( 𝑖  ∈  ℂ  →  ( ( 𝑖  +  1 )  −  1 )  =  𝑖 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  ( ( 𝑖  +  1 )  −  1 )  =  𝑖 ) | 
						
							| 17 | 16 | eqcomd | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  =  ( ( 𝑖  +  1 )  −  1 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  𝑖  =  ( ( 𝑖  +  1 )  −  1 ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑏 ‘ 𝑖 )  =  ( 𝑏 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  =  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  =  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) ) ) | 
						
							| 23 | 22 | mpteq2dva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) )  =  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) ) ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) ) ) ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) ) ) ) ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 27 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 28 | 27 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 29 | 28 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 30 | 3 4 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  Ring ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Ring ) | 
						
							| 32 |  | ringabl | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Abel ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Abel ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  Abel ) | 
						
							| 35 |  | elnnuz | ⊢ ( 𝑠  ∈  ℕ  ↔  𝑠  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 36 | 35 | biimpi | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 37 | 36 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑠  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 38 | 31 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  Ring ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  𝑌  ∈  Ring ) | 
						
							| 40 | 28 30 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  Ring ) | 
						
							| 41 | 40 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Ring ) | 
						
							| 42 |  | eqid | ⊢ ( mulGrp ‘ 𝑌 )  =  ( mulGrp ‘ 𝑌 ) | 
						
							| 43 | 42 | ringmgp | ⊢ ( 𝑌  ∈  Ring  →  ( mulGrp ‘ 𝑌 )  ∈  Mnd ) | 
						
							| 44 | 41 43 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( mulGrp ‘ 𝑌 )  ∈  Mnd ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( mulGrp ‘ 𝑌 )  ∈  Mnd ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  ( mulGrp ‘ 𝑌 )  ∈  Mnd ) | 
						
							| 47 |  | mndmgm | ⊢ ( ( mulGrp ‘ 𝑌 )  ∈  Mnd  →  ( mulGrp ‘ 𝑌 )  ∈  Mgm ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  ( mulGrp ‘ 𝑌 )  ∈  Mgm ) | 
						
							| 49 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  𝑘  ∈  ℕ ) | 
						
							| 51 | 8 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 52 | 27 51 | syl3an2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 55 | 42 26 | mgpbas | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 56 | 55 10 | mulgnncl | ⊢ ( ( ( mulGrp ‘ 𝑌 )  ∈  Mgm  ∧  𝑘  ∈  ℕ  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 57 | 48 50 54 56 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 58 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 60 | 27 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 63 |  | elmapi | ⊢ ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 67 |  | nnz | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℤ ) | 
						
							| 68 |  | peano2nn | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  +  1 )  ∈  ℕ ) | 
						
							| 69 | 68 | nnzd | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  +  1 )  ∈  ℤ ) | 
						
							| 70 |  | elfzm1b | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ( 𝑠  +  1 )  ∈  ℤ )  →  ( 𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) )  ↔  ( 𝑘  −  1 )  ∈  ( 0 ... ( ( 𝑠  +  1 )  −  1 ) ) ) ) | 
						
							| 71 | 67 69 70 | syl2an | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑠  ∈  ℕ )  →  ( 𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) )  ↔  ( 𝑘  −  1 )  ∈  ( 0 ... ( ( 𝑠  +  1 )  −  1 ) ) ) ) | 
						
							| 72 |  | nncn | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℂ ) | 
						
							| 73 |  | pncan1 | ⊢ ( 𝑠  ∈  ℂ  →  ( ( 𝑠  +  1 )  −  1 )  =  𝑠 ) | 
						
							| 74 | 72 73 | syl | ⊢ ( 𝑠  ∈  ℕ  →  ( ( 𝑠  +  1 )  −  1 )  =  𝑠 ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑠  ∈  ℕ )  →  ( ( 𝑠  +  1 )  −  1 )  =  𝑠 ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑠  ∈  ℕ )  →  ( 0 ... ( ( 𝑠  +  1 )  −  1 ) )  =  ( 0 ... 𝑠 ) ) | 
						
							| 77 | 76 | eleq2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑠  ∈  ℕ )  →  ( ( 𝑘  −  1 )  ∈  ( 0 ... ( ( 𝑠  +  1 )  −  1 ) )  ↔  ( 𝑘  −  1 )  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 78 | 77 | biimpd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑠  ∈  ℕ )  →  ( ( 𝑘  −  1 )  ∈  ( 0 ... ( ( 𝑠  +  1 )  −  1 ) )  →  ( 𝑘  −  1 )  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 79 | 71 78 | sylbid | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑠  ∈  ℕ )  →  ( 𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) )  →  ( 𝑘  −  1 )  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 80 | 79 | expcom | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑘  ∈  ℕ  →  ( 𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) )  →  ( 𝑘  −  1 )  ∈  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 81 | 80 | com13 | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) )  →  ( 𝑘  ∈  ℕ  →  ( 𝑠  ∈  ℕ  →  ( 𝑘  −  1 )  ∈  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 82 | 49 81 | mpd | ⊢ ( 𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) )  →  ( 𝑠  ∈  ℕ  →  ( 𝑘  −  1 )  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 83 | 82 | com12 | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) )  →  ( 𝑘  −  1 )  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 84 | 83 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) )  →  ( 𝑘  −  1 )  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 85 | 84 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  ( 𝑘  −  1 )  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 86 | 66 85 | ffvelcdmd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  ( 𝑏 ‘ ( 𝑘  −  1 ) )  ∈  𝐵 ) | 
						
							| 87 | 8 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ ( 𝑘  −  1 ) )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 88 | 59 62 86 87 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 89 | 26 5 | ringcl | ⊢ ( ( 𝑌  ∈  Ring  ∧  ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑌 )  ∧  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 90 | 39 57 88 89 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) )  →  ( ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 91 | 90 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ∀ 𝑘  ∈  ( 1 ... ( 𝑠  +  1 ) ) ( ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 92 |  | oveq1 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 93 |  | fvoveq1 | ⊢ ( 𝑘  =  𝑖  →  ( 𝑏 ‘ ( 𝑘  −  1 ) )  =  ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) | 
						
							| 94 | 93 | fveq2d | ⊢ ( 𝑘  =  𝑖  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 95 | 92 94 | oveq12d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) ) )  =  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) ) ) | 
						
							| 96 |  | oveq1 | ⊢ ( 𝑘  =  ( 𝑖  +  1 )  →  ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 97 |  | fvoveq1 | ⊢ ( 𝑘  =  ( 𝑖  +  1 )  →  ( 𝑏 ‘ ( 𝑘  −  1 ) )  =  ( 𝑏 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) | 
						
							| 98 | 97 | fveq2d | ⊢ ( 𝑘  =  ( 𝑖  +  1 )  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) | 
						
							| 99 | 96 98 | oveq12d | ⊢ ( 𝑘  =  ( 𝑖  +  1 )  →  ( ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) ) )  =  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) ) | 
						
							| 100 |  | oveq1 | ⊢ ( 𝑘  =  1  →  ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( 1  ↑  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 101 |  | fvoveq1 | ⊢ ( 𝑘  =  1  →  ( 𝑏 ‘ ( 𝑘  −  1 ) )  =  ( 𝑏 ‘ ( 1  −  1 ) ) ) | 
						
							| 102 | 101 | fveq2d | ⊢ ( 𝑘  =  1  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ ( 1  −  1 ) ) ) ) | 
						
							| 103 | 100 102 | oveq12d | ⊢ ( 𝑘  =  1  →  ( ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) ) )  =  ( ( 1  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 1  −  1 ) ) ) ) ) | 
						
							| 104 |  | oveq1 | ⊢ ( 𝑘  =  ( 𝑠  +  1 )  →  ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 105 |  | fvoveq1 | ⊢ ( 𝑘  =  ( 𝑠  +  1 )  →  ( 𝑏 ‘ ( 𝑘  −  1 ) )  =  ( 𝑏 ‘ ( ( 𝑠  +  1 )  −  1 ) ) ) | 
						
							| 106 | 105 | fveq2d | ⊢ ( 𝑘  =  ( 𝑠  +  1 )  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠  +  1 )  −  1 ) ) ) ) | 
						
							| 107 | 104 106 | oveq12d | ⊢ ( 𝑘  =  ( 𝑠  +  1 )  →  ( ( 𝑘  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑘  −  1 ) ) ) )  =  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠  +  1 )  −  1 ) ) ) ) ) | 
						
							| 108 | 26 34 6 37 91 95 99 103 107 | telgsumfz | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑖  +  1 )  −  1 ) ) ) ) ) ) )  =  ( ( ( 1  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 1  −  1 ) ) ) )  −  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠  +  1 )  −  1 ) ) ) ) ) ) | 
						
							| 109 | 25 108 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  =  ( ( ( 1  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 1  −  1 ) ) ) )  −  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠  +  1 )  −  1 ) ) ) ) ) ) | 
						
							| 110 | 109 | oveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) )  =  ( ( ( ( 1  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 1  −  1 ) ) ) )  −  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠  +  1 )  −  1 ) ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 111 | 55 10 | mulg1 | ⊢ ( ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 )  →  ( 1  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 112 | 52 111 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 1  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 113 | 112 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 1  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 114 |  | 1cnd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  1  ∈  ℂ ) | 
						
							| 115 | 114 | subidd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 1  −  1 )  =  0 ) | 
						
							| 116 | 115 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑏 ‘ ( 1  −  1 ) )  =  ( 𝑏 ‘ 0 ) ) | 
						
							| 117 | 116 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 1  −  1 ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) | 
						
							| 118 | 113 117 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 1  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 1  −  1 ) ) ) )  =  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) | 
						
							| 119 | 72 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑠  ∈  ℂ ) | 
						
							| 120 | 119 114 | pncand | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑠  +  1 )  −  1 )  =  𝑠 ) | 
						
							| 121 | 120 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑏 ‘ ( ( 𝑠  +  1 )  −  1 ) )  =  ( 𝑏 ‘ 𝑠 ) ) | 
						
							| 122 | 121 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠  +  1 )  −  1 ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) | 
						
							| 123 | 122 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠  +  1 )  −  1 ) ) ) )  =  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) | 
						
							| 124 | 118 123 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 1  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 1  −  1 ) ) ) )  −  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠  +  1 )  −  1 ) ) ) ) )  =  ( ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  −  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) ) | 
						
							| 125 | 124 | oveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( ( 1  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 1  −  1 ) ) ) )  −  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠  +  1 )  −  1 ) ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) )  =  ( ( ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  −  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 126 |  | ringgrp | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Grp ) | 
						
							| 127 | 31 126 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Grp ) | 
						
							| 128 | 127 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  Grp ) | 
						
							| 129 |  | nnnn0 | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℕ0 ) | 
						
							| 130 |  | 0elfz | ⊢ ( 𝑠  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 131 | 129 130 | syl | ⊢ ( 𝑠  ∈  ℕ  →  0  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 132 | 131 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  0  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 133 | 65 132 | ffvelcdmd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑏 ‘ 0 )  ∈  𝐵 ) | 
						
							| 134 | 8 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ 0 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 135 | 58 61 133 134 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 136 | 26 5 | ringcl | ⊢ ( ( 𝑌  ∈  Ring  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 )  ∧  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 137 | 38 53 135 136 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 138 | 45 47 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( mulGrp ‘ 𝑌 )  ∈  Mgm ) | 
						
							| 139 |  | simprl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑠  ∈  ℕ ) | 
						
							| 140 | 139 | peano2nnd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑠  +  1 )  ∈  ℕ ) | 
						
							| 141 | 55 10 | mulgnncl | ⊢ ( ( ( mulGrp ‘ 𝑌 )  ∈  Mgm  ∧  ( 𝑠  +  1 )  ∈  ℕ  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 142 | 138 140 53 141 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 143 |  | nn0fz0 | ⊢ ( 𝑠  ∈  ℕ0  ↔  𝑠  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 144 | 129 143 | sylib | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 145 | 144 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑠  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 146 | 65 145 | ffvelcdmd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑏 ‘ 𝑠 )  ∈  𝐵 ) | 
						
							| 147 | 8 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ 𝑠 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 148 | 58 61 146 147 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 149 | 26 5 | ringcl | ⊢ ( ( 𝑌  ∈  Ring  ∧  ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑌 )  ∧  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 150 | 38 142 148 149 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 151 | 26 11 6 7 | grpnpncan0 | ⊢ ( ( 𝑌  ∈  Grp  ∧  ( ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  ∈  ( Base ‘ 𝑌 )  ∧  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  −  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) )  =   0  ) | 
						
							| 152 | 128 137 150 151 | syl12anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  −  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) )  =   0  ) | 
						
							| 153 | 125 152 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( ( 1  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 1  −  1 ) ) ) )  −  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( ( 𝑠  +  1 )  −  1 ) ) ) ) ) ( +g ‘ 𝑌 ) ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) )  =   0  ) | 
						
							| 154 | 12 110 153 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =   0  ) |