Step |
Hyp |
Ref |
Expression |
1 |
|
cayhamlem1.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cayhamlem1.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cayhamlem1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cayhamlem1.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cayhamlem1.r |
⊢ × = ( .r ‘ 𝑌 ) |
6 |
|
cayhamlem1.s |
⊢ − = ( -g ‘ 𝑌 ) |
7 |
|
cayhamlem1.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
8 |
|
cayhamlem1.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
9 |
|
cayhamlem1.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
10 |
|
cayhamlem1.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑌 ) ) |
11 |
|
chfacfpmmulgsum.p |
⊢ + = ( +g ‘ 𝑌 ) |
12 |
1 2 3 4 5 6 7 8 9 10 11
|
chfacfpmmulgsum |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
14 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
15 |
14
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
16 |
3 4
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring ) |
17 |
15 16
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring ) |
18 |
17
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑌 ∈ Ring ) |
20 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
21 |
20
|
ringmgp |
⊢ ( 𝑌 ∈ Ring → ( mulGrp ‘ 𝑌 ) ∈ Mnd ) |
22 |
|
mndmgm |
⊢ ( ( mulGrp ‘ 𝑌 ) ∈ Mnd → ( mulGrp ‘ 𝑌 ) ∈ Mgm ) |
23 |
21 22
|
syl |
⊢ ( 𝑌 ∈ Ring → ( mulGrp ‘ 𝑌 ) ∈ Mgm ) |
24 |
18 23
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( mulGrp ‘ 𝑌 ) ∈ Mgm ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( mulGrp ‘ 𝑌 ) ∈ Mgm ) |
26 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 ∈ ℕ ) |
27 |
26
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑖 ∈ ℕ ) |
28 |
8 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
29 |
14 28
|
syl3an2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
30 |
29
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
31 |
20 13
|
mgpbas |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) |
32 |
31 10
|
mulgnncl |
⊢ ( ( ( mulGrp ‘ 𝑌 ) ∈ Mgm ∧ 𝑖 ∈ ℕ ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) → ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
33 |
25 27 30 32
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
34 |
15
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
36 |
|
elmapi |
⊢ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) |
37 |
36
|
adantl |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) |
39 |
38
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) |
40 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
41 |
40
|
a1i |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 1 ∈ ℕ0 ) |
42 |
|
nnnn0 |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℕ0 ) |
43 |
42
|
adantr |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑠 ∈ ℕ0 ) |
44 |
|
nnge1 |
⊢ ( 𝑠 ∈ ℕ → 1 ≤ 𝑠 ) |
45 |
44
|
adantr |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 1 ≤ 𝑠 ) |
46 |
|
elfz2nn0 |
⊢ ( 1 ∈ ( 0 ... 𝑠 ) ↔ ( 1 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 1 ≤ 𝑠 ) ) |
47 |
41 43 45 46
|
syl3anbrc |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 1 ∈ ( 0 ... 𝑠 ) ) |
48 |
|
simpr |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑖 ∈ ( 1 ... 𝑠 ) ) |
49 |
|
fz0fzdiffz0 |
⊢ ( ( 1 ∈ ( 0 ... 𝑠 ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑖 − 1 ) ∈ ( 0 ... 𝑠 ) ) |
50 |
47 48 49
|
syl2anc |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑖 − 1 ) ∈ ( 0 ... 𝑠 ) ) |
51 |
50
|
ex |
⊢ ( 𝑠 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑠 ) → ( 𝑖 − 1 ) ∈ ( 0 ... 𝑠 ) ) ) |
52 |
51
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 1 ... 𝑠 ) → ( 𝑖 − 1 ) ∈ ( 0 ... 𝑠 ) ) ) |
53 |
52
|
imp |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑖 − 1 ) ∈ ( 0 ... 𝑠 ) ) |
54 |
39 53
|
ffvelrnd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ 𝐵 ) |
55 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ 𝐵 ) ) |
56 |
35 54 55
|
sylanbrc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ 𝐵 ) ) |
57 |
8 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
58 |
56 57
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
59 |
34 16
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑌 ∈ Ring ) |
61 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑁 ∈ Fin ) |
62 |
14
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑅 ∈ Ring ) |
64 |
42
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ℕ0 ) |
65 |
61 63 64
|
3jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ) |
66 |
65
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ) |
67 |
|
simpr |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) |
68 |
67
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) |
69 |
|
fz1ssfz0 |
⊢ ( 1 ... 𝑠 ) ⊆ ( 0 ... 𝑠 ) |
70 |
69
|
sseli |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 ∈ ( 0 ... 𝑠 ) ) |
71 |
68 70
|
anim12i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) ) |
72 |
1 2 3 4 8
|
m2pmfzmap |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
73 |
66 71 72
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
74 |
13 5
|
ringcl |
⊢ ( ( 𝑌 ∈ Ring ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
75 |
60 30 73 74
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
76 |
13 5 6 19 33 58 75
|
ringsubdi |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) = ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |
77 |
13 5
|
ringass |
⊢ ( ( 𝑌 ∈ Ring ∧ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) ) → ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) = ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
78 |
60 33 30 73 77
|
syl13anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) = ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
79 |
78
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) |
80 |
29 31
|
eleqtrdi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) |
81 |
80
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) |
82 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) |
83 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( mulGrp ‘ 𝑌 ) ) |
84 |
82 10 83
|
mulgnnp1 |
⊢ ( ( 𝑖 ∈ ℕ ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) → ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) = ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) ( +g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝑇 ‘ 𝑀 ) ) ) |
85 |
26 81 84
|
syl2anr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) = ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) ( +g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝑇 ‘ 𝑀 ) ) ) |
86 |
20 5
|
mgpplusg |
⊢ × = ( +g ‘ ( mulGrp ‘ 𝑌 ) ) |
87 |
86
|
eqcomi |
⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = × |
88 |
87
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = × ) |
89 |
88
|
oveqd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) ( +g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝑇 ‘ 𝑀 ) ) = ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ 𝑀 ) ) ) |
90 |
85 89
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) = ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ 𝑀 ) ) ) |
91 |
90
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ 𝑀 ) ) = ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) ) |
92 |
91
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) = ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) |
93 |
79 92
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) |
94 |
93
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) = ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
95 |
76 94
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) = ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
96 |
95
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) = ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |
97 |
96
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) |
98 |
97
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
99 |
12 98
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) − ( ( ( 𝑖 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |