| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayhamlem1.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cayhamlem1.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cayhamlem1.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cayhamlem1.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cayhamlem1.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 6 |  | cayhamlem1.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 7 |  | cayhamlem1.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 8 |  | cayhamlem1.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 9 |  | cayhamlem1.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 10 |  | cayhamlem1.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 11 |  | chfacfpmmulgsum.p | ⊢  +   =  ( +g ‘ 𝑌 ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 11 | chfacfpmmulgsum | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 14 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 15 | 14 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 16 | 3 4 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  Ring ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  Ring ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Ring ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  𝑌  ∈  Ring ) | 
						
							| 20 |  | eqid | ⊢ ( mulGrp ‘ 𝑌 )  =  ( mulGrp ‘ 𝑌 ) | 
						
							| 21 | 20 | ringmgp | ⊢ ( 𝑌  ∈  Ring  →  ( mulGrp ‘ 𝑌 )  ∈  Mnd ) | 
						
							| 22 |  | mndmgm | ⊢ ( ( mulGrp ‘ 𝑌 )  ∈  Mnd  →  ( mulGrp ‘ 𝑌 )  ∈  Mgm ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝑌  ∈  Ring  →  ( mulGrp ‘ 𝑌 )  ∈  Mgm ) | 
						
							| 24 | 18 23 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( mulGrp ‘ 𝑌 )  ∈  Mgm ) | 
						
							| 25 | 24 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( mulGrp ‘ 𝑌 )  ∈  Mgm ) | 
						
							| 26 |  | elfznn | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ∈  ℕ ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  𝑖  ∈  ℕ ) | 
						
							| 28 | 8 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 29 | 14 28 | syl3an2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 30 | 29 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 31 | 20 13 | mgpbas | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 32 | 31 10 | mulgnncl | ⊢ ( ( ( mulGrp ‘ 𝑌 )  ∈  Mgm  ∧  𝑖  ∈  ℕ  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 33 | 25 27 30 32 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 34 | 15 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 35 | 34 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 36 |  | elmapi | ⊢ ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 40 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 41 | 40 | a1i | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  1  ∈  ℕ0 ) | 
						
							| 42 |  | nnnn0 | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℕ0 ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 44 |  | nnge1 | ⊢ ( 𝑠  ∈  ℕ  →  1  ≤  𝑠 ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  1  ≤  𝑠 ) | 
						
							| 46 |  | elfz2nn0 | ⊢ ( 1  ∈  ( 0 ... 𝑠 )  ↔  ( 1  ∈  ℕ0  ∧  𝑠  ∈  ℕ0  ∧  1  ≤  𝑠 ) ) | 
						
							| 47 | 41 43 45 46 | syl3anbrc | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  1  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 48 |  | simpr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  𝑖  ∈  ( 1 ... 𝑠 ) ) | 
						
							| 49 |  | fz0fzdiffz0 | ⊢ ( ( 1  ∈  ( 0 ... 𝑠 )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑖  −  1 )  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 50 | 47 48 49 | syl2anc | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑖  −  1 )  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 51 | 50 | ex | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑖  ∈  ( 1 ... 𝑠 )  →  ( 𝑖  −  1 )  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 52 | 51 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ( 1 ... 𝑠 )  →  ( 𝑖  −  1 )  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑖  −  1 )  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 54 | 39 53 | ffvelcdmd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑏 ‘ ( 𝑖  −  1 ) )  ∈  𝐵 ) | 
						
							| 55 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ ( 𝑖  −  1 ) )  ∈  𝐵 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑏 ‘ ( 𝑖  −  1 ) )  ∈  𝐵 ) ) | 
						
							| 56 | 35 54 55 | sylanbrc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ ( 𝑖  −  1 ) )  ∈  𝐵 ) ) | 
						
							| 57 | 8 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ ( 𝑖  −  1 ) )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 59 | 34 16 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Ring ) | 
						
							| 60 | 59 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  𝑌  ∈  Ring ) | 
						
							| 61 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 62 | 14 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 64 | 42 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 65 | 61 63 64 | 3jca | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 ) ) | 
						
							| 67 |  | simpr | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) | 
						
							| 69 |  | fz1ssfz0 | ⊢ ( 1 ... 𝑠 )  ⊆  ( 0 ... 𝑠 ) | 
						
							| 70 | 69 | sseli | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 71 | 68 70 | anim12i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 72 | 1 2 3 4 8 | m2pmfzmap | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 73 | 66 71 72 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 74 | 13 5 | ringcl | ⊢ ( ( 𝑌  ∈  Ring  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 )  ∧  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 75 | 60 30 73 74 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 76 | 13 5 6 19 33 58 75 | ringsubdi | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) )  =  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 77 | 13 5 | ringass | ⊢ ( ( 𝑌  ∈  Ring  ∧  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ∈  ( Base ‘ 𝑌 )  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 )  ∧  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  =  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 78 | 60 33 30 73 77 | syl13anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  =  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 79 | 78 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  =  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) | 
						
							| 80 | 29 31 | eleqtrdi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 82 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 83 |  | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 84 | 82 10 83 | mulgnnp1 | ⊢ ( ( 𝑖  ∈  ℕ  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) )  →  ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) ) ( +g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 85 | 26 81 84 | syl2anr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) ) ( +g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 86 | 20 5 | mgpplusg | ⊢  ×   =  ( +g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 87 | 86 | eqcomi | ⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =   × | 
						
							| 88 | 87 | a1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =   ×  ) | 
						
							| 89 | 88 | oveqd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) ) ( +g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝑇 ‘ 𝑀 ) )  =  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 90 | 85 89 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 91 | 90 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ 𝑀 ) )  =  ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 92 | 91 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  =  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) | 
						
							| 93 | 79 92 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  =  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) | 
						
							| 94 | 93 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) )  =  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 95 | 76 94 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) )  =  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 96 | 95 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  =  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 97 | 96 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 98 | 97 | oveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 99 | 12 98 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) )  −  ( ( ( 𝑖  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |