Metamath Proof Explorer


Theorem chfacfpmmulgsum2

Description: Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a 𝐴 = ( 𝑁 Mat 𝑅 )
cayhamlem1.b 𝐵 = ( Base ‘ 𝐴 )
cayhamlem1.p 𝑃 = ( Poly1𝑅 )
cayhamlem1.y 𝑌 = ( 𝑁 Mat 𝑃 )
cayhamlem1.r × = ( .r𝑌 )
cayhamlem1.s = ( -g𝑌 )
cayhamlem1.0 0 = ( 0g𝑌 )
cayhamlem1.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
cayhamlem1.g 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
cayhamlem1.e = ( .g ‘ ( mulGrp ‘ 𝑌 ) )
chfacfpmmulgsum.p + = ( +g𝑌 )
Assertion chfacfpmmulgsum2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝐺𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ( ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cayhamlem1.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cayhamlem1.b 𝐵 = ( Base ‘ 𝐴 )
3 cayhamlem1.p 𝑃 = ( Poly1𝑅 )
4 cayhamlem1.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 cayhamlem1.r × = ( .r𝑌 )
6 cayhamlem1.s = ( -g𝑌 )
7 cayhamlem1.0 0 = ( 0g𝑌 )
8 cayhamlem1.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
9 cayhamlem1.g 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
10 cayhamlem1.e = ( .g ‘ ( mulGrp ‘ 𝑌 ) )
11 chfacfpmmulgsum.p + = ( +g𝑌 )
12 1 2 3 4 5 6 7 8 9 10 11 chfacfpmmulgsum ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝐺𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ( 𝑇𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )
13 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
14 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
15 14 anim2i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
16 3 4 pmatring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring )
17 15 16 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring )
18 17 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑌 ∈ Ring )
19 18 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑌 ∈ Ring )
20 eqid ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 )
21 20 ringmgp ( 𝑌 ∈ Ring → ( mulGrp ‘ 𝑌 ) ∈ Mnd )
22 mndmgm ( ( mulGrp ‘ 𝑌 ) ∈ Mnd → ( mulGrp ‘ 𝑌 ) ∈ Mgm )
23 21 22 syl ( 𝑌 ∈ Ring → ( mulGrp ‘ 𝑌 ) ∈ Mgm )
24 18 23 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( mulGrp ‘ 𝑌 ) ∈ Mgm )
25 24 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( mulGrp ‘ 𝑌 ) ∈ Mgm )
26 elfznn ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 ∈ ℕ )
27 26 adantl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑖 ∈ ℕ )
28 8 1 2 3 4 mat2pmatbas ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
29 14 28 syl3an2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
30 29 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
31 20 13 mgpbas ( Base ‘ 𝑌 ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) )
32 31 10 mulgnncl ( ( ( mulGrp ‘ 𝑌 ) ∈ Mgm ∧ 𝑖 ∈ ℕ ∧ ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) ) → ( 𝑖 ( 𝑇𝑀 ) ) ∈ ( Base ‘ 𝑌 ) )
33 25 27 30 32 syl3anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑖 ( 𝑇𝑀 ) ) ∈ ( Base ‘ 𝑌 ) )
34 15 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
35 34 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
36 elmapi ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 )
37 36 adantl ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 )
38 37 adantl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 )
39 38 adantr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 )
40 1nn0 1 ∈ ℕ0
41 40 a1i ( ( 𝑠 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 1 ∈ ℕ0 )
42 nnnn0 ( 𝑠 ∈ ℕ → 𝑠 ∈ ℕ0 )
43 42 adantr ( ( 𝑠 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑠 ∈ ℕ0 )
44 nnge1 ( 𝑠 ∈ ℕ → 1 ≤ 𝑠 )
45 44 adantr ( ( 𝑠 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 1 ≤ 𝑠 )
46 elfz2nn0 ( 1 ∈ ( 0 ... 𝑠 ) ↔ ( 1 ∈ ℕ0𝑠 ∈ ℕ0 ∧ 1 ≤ 𝑠 ) )
47 41 43 45 46 syl3anbrc ( ( 𝑠 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 1 ∈ ( 0 ... 𝑠 ) )
48 simpr ( ( 𝑠 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑖 ∈ ( 1 ... 𝑠 ) )
49 fz0fzdiffz0 ( ( 1 ∈ ( 0 ... 𝑠 ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑖 − 1 ) ∈ ( 0 ... 𝑠 ) )
50 47 48 49 syl2anc ( ( 𝑠 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑖 − 1 ) ∈ ( 0 ... 𝑠 ) )
51 50 ex ( 𝑠 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑠 ) → ( 𝑖 − 1 ) ∈ ( 0 ... 𝑠 ) ) )
52 51 ad2antrl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 1 ... 𝑠 ) → ( 𝑖 − 1 ) ∈ ( 0 ... 𝑠 ) ) )
53 52 imp ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑖 − 1 ) ∈ ( 0 ... 𝑠 ) )
54 39 53 ffvelrnd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ 𝐵 )
55 df-3an ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ 𝐵 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ 𝐵 ) )
56 35 54 55 sylanbrc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ 𝐵 ) )
57 8 1 2 3 4 mat2pmatbas ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ∈ ( Base ‘ 𝑌 ) )
58 56 57 syl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ∈ ( Base ‘ 𝑌 ) )
59 34 16 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑌 ∈ Ring )
60 59 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑌 ∈ Ring )
61 simpl1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑁 ∈ Fin )
62 14 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑅 ∈ Ring )
63 62 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑅 ∈ Ring )
64 42 ad2antrl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ℕ0 )
65 61 63 64 3jca ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) )
66 65 adantr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) )
67 simpr ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) )
68 67 adantl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) )
69 fz1ssfz0 ( 1 ... 𝑠 ) ⊆ ( 0 ... 𝑠 )
70 69 sseli ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 ∈ ( 0 ... 𝑠 ) )
71 68 70 anim12i ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) )
72 1 2 3 4 8 m2pmfzmap ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) ) → ( 𝑇 ‘ ( 𝑏𝑖 ) ) ∈ ( Base ‘ 𝑌 ) )
73 66 71 72 syl2anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑇 ‘ ( 𝑏𝑖 ) ) ∈ ( Base ‘ 𝑌 ) )
74 13 5 ringcl ( ( 𝑌 ∈ Ring ∧ ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ ( 𝑏𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ∈ ( Base ‘ 𝑌 ) )
75 60 30 73 74 syl3anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ∈ ( Base ‘ 𝑌 ) )
76 13 5 6 19 33 58 75 ringsubdi ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ( 𝑇𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) = ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ( ( 𝑖 ( 𝑇𝑀 ) ) × ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) )
77 13 5 ringass ( ( 𝑌 ∈ Ring ∧ ( ( 𝑖 ( 𝑇𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ ( 𝑏𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) ) → ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) = ( ( 𝑖 ( 𝑇𝑀 ) ) × ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) )
78 60 33 30 73 77 syl13anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) = ( ( 𝑖 ( 𝑇𝑀 ) ) × ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) )
79 78 eqcomd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ( 𝑇𝑀 ) ) × ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) = ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) )
80 29 31 eleqtrdi ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) )
81 80 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑇𝑀 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) )
82 eqid ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) )
83 eqid ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( mulGrp ‘ 𝑌 ) )
84 82 10 83 mulgnnp1 ( ( 𝑖 ∈ ℕ ∧ ( 𝑇𝑀 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) → ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) = ( ( 𝑖 ( 𝑇𝑀 ) ) ( +g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝑇𝑀 ) ) )
85 26 81 84 syl2anr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) = ( ( 𝑖 ( 𝑇𝑀 ) ) ( +g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝑇𝑀 ) ) )
86 20 5 mgpplusg × = ( +g ‘ ( mulGrp ‘ 𝑌 ) )
87 86 eqcomi ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ×
88 87 a1i ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = × )
89 88 oveqd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ( 𝑇𝑀 ) ) ( +g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝑇𝑀 ) ) = ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇𝑀 ) ) )
90 85 89 eqtrd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) = ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇𝑀 ) ) )
91 90 eqcomd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇𝑀 ) ) = ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) )
92 91 oveq1d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) = ( ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) )
93 79 92 eqtrd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ( 𝑇𝑀 ) ) × ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) = ( ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) )
94 93 oveq2d ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ( ( 𝑖 ( 𝑇𝑀 ) ) × ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) = ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ( ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) )
95 76 94 eqtrd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ( 𝑇𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) = ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ( ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) )
96 95 mpteq2dva ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ( 𝑇𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) = ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ( ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) )
97 96 oveq2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ( 𝑇𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ( ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) )
98 97 oveq1d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ( 𝑇𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ( ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )
99 12 98 eqtrd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝐺𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( ( 𝑖 ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ( ( ( 𝑖 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ( 𝑇𝑀 ) ) × ( 𝑇 ‘ ( 𝑏𝑠 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )