| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayhamlem1.a |  | 
						
							| 2 |  | cayhamlem1.b |  | 
						
							| 3 |  | cayhamlem1.p |  | 
						
							| 4 |  | cayhamlem1.y |  | 
						
							| 5 |  | cayhamlem1.r |  | 
						
							| 6 |  | cayhamlem1.s |  | 
						
							| 7 |  | cayhamlem1.0 |  | 
						
							| 8 |  | cayhamlem1.t |  | 
						
							| 9 |  | cayhamlem1.g |  | 
						
							| 10 |  | cayhamlem1.e |  | 
						
							| 11 |  | chfacfpmmulgsum.p |  | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 11 | chfacfpmmulgsum |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | crngring |  | 
						
							| 15 | 14 | anim2i |  | 
						
							| 16 | 3 4 | pmatring |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 17 | 3adant3 |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 20 | ringmgp |  | 
						
							| 22 |  | mndmgm |  | 
						
							| 23 | 21 22 | syl |  | 
						
							| 24 | 18 23 | syl |  | 
						
							| 25 | 24 | ad2antrr |  | 
						
							| 26 |  | elfznn |  | 
						
							| 27 | 26 | adantl |  | 
						
							| 28 | 8 1 2 3 4 | mat2pmatbas |  | 
						
							| 29 | 14 28 | syl3an2 |  | 
						
							| 30 | 29 | ad2antrr |  | 
						
							| 31 | 20 13 | mgpbas |  | 
						
							| 32 | 31 10 | mulgnncl |  | 
						
							| 33 | 25 27 30 32 | syl3anc |  | 
						
							| 34 | 15 | 3adant3 |  | 
						
							| 35 | 34 | ad2antrr |  | 
						
							| 36 |  | elmapi |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 |  | 1nn0 |  | 
						
							| 41 | 40 | a1i |  | 
						
							| 42 |  | nnnn0 |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 |  | nnge1 |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 |  | elfz2nn0 |  | 
						
							| 47 | 41 43 45 46 | syl3anbrc |  | 
						
							| 48 |  | simpr |  | 
						
							| 49 |  | fz0fzdiffz0 |  | 
						
							| 50 | 47 48 49 | syl2anc |  | 
						
							| 51 | 50 | ex |  | 
						
							| 52 | 51 | ad2antrl |  | 
						
							| 53 | 52 | imp |  | 
						
							| 54 | 39 53 | ffvelcdmd |  | 
						
							| 55 |  | df-3an |  | 
						
							| 56 | 35 54 55 | sylanbrc |  | 
						
							| 57 | 8 1 2 3 4 | mat2pmatbas |  | 
						
							| 58 | 56 57 | syl |  | 
						
							| 59 | 34 16 | syl |  | 
						
							| 60 | 59 | ad2antrr |  | 
						
							| 61 |  | simpl1 |  | 
						
							| 62 | 14 | 3ad2ant2 |  | 
						
							| 63 | 62 | adantr |  | 
						
							| 64 | 42 | ad2antrl |  | 
						
							| 65 | 61 63 64 | 3jca |  | 
						
							| 66 | 65 | adantr |  | 
						
							| 67 |  | simpr |  | 
						
							| 68 | 67 | adantl |  | 
						
							| 69 |  | fz1ssfz0 |  | 
						
							| 70 | 69 | sseli |  | 
						
							| 71 | 68 70 | anim12i |  | 
						
							| 72 | 1 2 3 4 8 | m2pmfzmap |  | 
						
							| 73 | 66 71 72 | syl2anc |  | 
						
							| 74 | 13 5 | ringcl |  | 
						
							| 75 | 60 30 73 74 | syl3anc |  | 
						
							| 76 | 13 5 6 19 33 58 75 | ringsubdi |  | 
						
							| 77 | 13 5 | ringass |  | 
						
							| 78 | 60 33 30 73 77 | syl13anc |  | 
						
							| 79 | 78 | eqcomd |  | 
						
							| 80 | 29 31 | eleqtrdi |  | 
						
							| 81 | 80 | adantr |  | 
						
							| 82 |  | eqid |  | 
						
							| 83 |  | eqid |  | 
						
							| 84 | 82 10 83 | mulgnnp1 |  | 
						
							| 85 | 26 81 84 | syl2anr |  | 
						
							| 86 | 20 5 | mgpplusg |  | 
						
							| 87 | 86 | eqcomi |  | 
						
							| 88 | 87 | a1i |  | 
						
							| 89 | 88 | oveqd |  | 
						
							| 90 | 85 89 | eqtrd |  | 
						
							| 91 | 90 | eqcomd |  | 
						
							| 92 | 91 | oveq1d |  | 
						
							| 93 | 79 92 | eqtrd |  | 
						
							| 94 | 93 | oveq2d |  | 
						
							| 95 | 76 94 | eqtrd |  | 
						
							| 96 | 95 | mpteq2dva |  | 
						
							| 97 | 96 | oveq2d |  | 
						
							| 98 | 97 | oveq1d |  | 
						
							| 99 | 12 98 | eqtrd |  |