Step |
Hyp |
Ref |
Expression |
1 |
|
cayhamlem1.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cayhamlem1.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cayhamlem1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cayhamlem1.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cayhamlem1.r |
⊢ × = ( .r ‘ 𝑌 ) |
6 |
|
cayhamlem1.s |
⊢ − = ( -g ‘ 𝑌 ) |
7 |
|
cayhamlem1.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
8 |
|
cayhamlem1.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
9 |
|
cayhamlem1.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
10 |
|
cayhamlem1.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑌 ) ) |
11 |
|
chfacfpmmulgsum.p |
⊢ + = ( +g ‘ 𝑌 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
13 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
14 |
13
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
16 |
3 4
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring ) |
17 |
15 16
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
18 |
|
ringcmn |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ CMnd ) |
19 |
17 18
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ CMnd ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑌 ∈ CMnd ) |
21 |
|
nn0ex |
⊢ ℕ0 ∈ V |
22 |
21
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ℕ0 ∈ V ) |
23 |
|
simpll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ) |
24 |
|
simplr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) |
25 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
26 |
23 24 25
|
3jca |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑖 ∈ ℕ0 ) ) |
27 |
1 2 3 4 5 6 7 8 9 10
|
chfacfpmmulcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
28 |
26 27
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
29 |
1 2 3 4 5 6 7 8 9 10
|
chfacfpmmulfsupp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) finSupp 0 ) |
30 |
|
nn0disj |
⊢ ( ( 0 ... ( 𝑠 + 1 ) ) ∩ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ) = ∅ |
31 |
30
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 0 ... ( 𝑠 + 1 ) ) ∩ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ) = ∅ ) |
32 |
|
nnnn0 |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℕ0 ) |
33 |
|
peano2nn0 |
⊢ ( 𝑠 ∈ ℕ0 → ( 𝑠 + 1 ) ∈ ℕ0 ) |
34 |
32 33
|
syl |
⊢ ( 𝑠 ∈ ℕ → ( 𝑠 + 1 ) ∈ ℕ0 ) |
35 |
|
nn0split |
⊢ ( ( 𝑠 + 1 ) ∈ ℕ0 → ℕ0 = ( ( 0 ... ( 𝑠 + 1 ) ) ∪ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ) ) |
36 |
34 35
|
syl |
⊢ ( 𝑠 ∈ ℕ → ℕ0 = ( ( 0 ... ( 𝑠 + 1 ) ) ∪ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ) ) |
37 |
36
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ℕ0 = ( ( 0 ... ( 𝑠 + 1 ) ) ∪ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ) ) |
38 |
12 7 11 20 22 28 29 31 37
|
gsumsplit2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( 𝑌 Σg ( 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) |
39 |
|
simpll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ) |
40 |
|
simplr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ) → ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) |
41 |
|
nncn |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℂ ) |
42 |
|
add1p1 |
⊢ ( 𝑠 ∈ ℂ → ( ( 𝑠 + 1 ) + 1 ) = ( 𝑠 + 2 ) ) |
43 |
41 42
|
syl |
⊢ ( 𝑠 ∈ ℕ → ( ( 𝑠 + 1 ) + 1 ) = ( 𝑠 + 2 ) ) |
44 |
43
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑠 + 1 ) + 1 ) = ( 𝑠 + 2 ) ) |
45 |
44
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) = ( ℤ≥ ‘ ( 𝑠 + 2 ) ) ) |
46 |
45
|
eleq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ↔ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑠 + 2 ) ) ) ) |
47 |
46
|
biimpa |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ ( 𝑠 + 2 ) ) ) |
48 |
1 2 3 4 5 6 7 8 9 10
|
chfacfpmmul0 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑠 + 2 ) ) ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = 0 ) |
49 |
39 40 47 48
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = 0 ) |
50 |
49
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) = ( 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ↦ 0 ) ) |
51 |
50
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ↦ 0 ) ) ) |
52 |
13 16
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring ) |
53 |
|
ringmnd |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Mnd ) |
54 |
52 53
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Mnd ) |
55 |
54
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Mnd ) |
56 |
|
fvex |
⊢ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ∈ V |
57 |
55 56
|
jctir |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑌 ∈ Mnd ∧ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ∈ V ) ) |
58 |
57
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 ∈ Mnd ∧ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ∈ V ) ) |
59 |
7
|
gsumz |
⊢ ( ( 𝑌 ∈ Mnd ∧ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ∈ V ) → ( 𝑌 Σg ( 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ↦ 0 ) ) = 0 ) |
60 |
58 59
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ↦ 0 ) ) = 0 ) |
61 |
51 60
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = 0 ) |
62 |
61
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( 𝑌 Σg ( 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + 0 ) ) |
63 |
|
fzfid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 0 ... ( 𝑠 + 1 ) ) ∈ Fin ) |
64 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) → 𝑖 ∈ ℕ0 ) |
65 |
64 26
|
sylan2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑖 ∈ ℕ0 ) ) |
66 |
65 27
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
67 |
66
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ∀ 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
68 |
12 20 63 67
|
gsummptcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
69 |
12 11 7
|
mndrid |
⊢ ( ( 𝑌 ∈ Mnd ∧ ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + 0 ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
70 |
55 68 69
|
syl2an2r |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + 0 ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
71 |
62 70
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( 𝑌 Σg ( 𝑖 ∈ ( ℤ≥ ‘ ( ( 𝑠 + 1 ) + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
72 |
32
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ℕ0 ) |
73 |
12 11 20 72 66
|
gsummptfzsplit |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( 𝑌 Σg ( 𝑖 ∈ { ( 𝑠 + 1 ) } ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) |
74 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑠 ) → 𝑖 ∈ ℕ0 ) |
75 |
74 28
|
sylan2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
76 |
12 11 20 72 75
|
gsummptfzsplitl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( 𝑌 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) |
77 |
55
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑌 ∈ Mnd ) |
78 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
79 |
78
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 0 ∈ ℕ0 ) |
80 |
1 2 3 4 5 6 7 8 9 10
|
chfacfpmmulcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 0 ∈ ℕ0 ) → ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ∈ ( Base ‘ 𝑌 ) ) |
81 |
79 80
|
mpd3an3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ∈ ( Base ‘ 𝑌 ) ) |
82 |
|
oveq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) ) |
83 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 0 ) ) |
84 |
82 83
|
oveq12d |
⊢ ( 𝑖 = 0 → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ) |
85 |
12 84
|
gsumsn |
⊢ ( ( 𝑌 ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( 𝑌 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ) |
86 |
77 79 81 85
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ) |
87 |
86
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( 𝑌 Σg ( 𝑖 ∈ { 0 } ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ) ) |
88 |
76 87
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ) ) |
89 |
|
ovexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑠 + 1 ) ∈ V ) |
90 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
91 |
90
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 1 ∈ ℕ0 ) |
92 |
72 91
|
nn0addcld |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑠 + 1 ) ∈ ℕ0 ) |
93 |
1 2 3 4 5 6 7 8 9 10
|
chfacfpmmulcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ ( 𝑠 + 1 ) ∈ ℕ0 ) → ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
94 |
92 93
|
mpd3an3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
95 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝑠 + 1 ) → ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) ) |
96 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑠 + 1 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) |
97 |
95 96
|
oveq12d |
⊢ ( 𝑖 = ( 𝑠 + 1 ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) |
98 |
12 97
|
gsumsn |
⊢ ( ( 𝑌 ∈ Mnd ∧ ( 𝑠 + 1 ) ∈ V ∧ ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ∈ ( Base ‘ 𝑌 ) ) → ( 𝑌 Σg ( 𝑖 ∈ { ( 𝑠 + 1 ) } ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) |
99 |
77 89 94 98
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ { ( 𝑠 + 1 ) } ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) |
100 |
88 99
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( 𝑌 Σg ( 𝑖 ∈ { ( 𝑠 + 1 ) } ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ) = ( ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ) + ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) ) |
101 |
|
fzfid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 1 ... 𝑠 ) ∈ Fin ) |
102 |
|
simpll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ) |
103 |
|
simplr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) |
104 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 ∈ ℕ ) |
105 |
104
|
nnnn0d |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 ∈ ℕ0 ) |
106 |
105
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → 𝑖 ∈ ℕ0 ) |
107 |
102 103 106 27
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
108 |
107
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑠 ) ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
109 |
12 20 101 108
|
gsummptcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
110 |
12 11
|
mndass |
⊢ ( ( 𝑌 ∈ Mnd ∧ ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ∈ ( Base ‘ 𝑌 ) ) ) → ( ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ) + ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) + ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) ) ) |
111 |
77 109 81 94 110
|
syl13anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ) + ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) + ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) ) ) |
112 |
104
|
nnne0d |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 ≠ 0 ) |
113 |
112
|
ad2antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → 𝑖 ≠ 0 ) |
114 |
|
neeq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ≠ 0 ↔ 𝑖 ≠ 0 ) ) |
115 |
114
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → ( 𝑛 ≠ 0 ↔ 𝑖 ≠ 0 ) ) |
116 |
113 115
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → 𝑛 ≠ 0 ) |
117 |
|
eqneqall |
⊢ ( 𝑛 = 0 → ( 𝑛 ≠ 0 → 0 = ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) ) |
118 |
116 117
|
mpan9 |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ 𝑛 = 0 ) → 0 = ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) |
119 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ 𝑛 = 0 ) → 𝑛 = 𝑖 ) |
120 |
|
eqeq1 |
⊢ ( 0 = 𝑛 → ( 0 = 𝑖 ↔ 𝑛 = 𝑖 ) ) |
121 |
120
|
eqcoms |
⊢ ( 𝑛 = 0 → ( 0 = 𝑖 ↔ 𝑛 = 𝑖 ) ) |
122 |
121
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ 𝑛 = 0 ) → ( 0 = 𝑖 ↔ 𝑛 = 𝑖 ) ) |
123 |
119 122
|
mpbird |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ 𝑛 = 0 ) → 0 = 𝑖 ) |
124 |
123
|
fveq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ 𝑛 = 0 ) → ( 𝑏 ‘ 0 ) = ( 𝑏 ‘ 𝑖 ) ) |
125 |
124
|
fveq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ 𝑛 = 0 ) → ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) |
126 |
125
|
oveq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ 𝑛 = 0 ) → ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) = ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) |
127 |
118 126
|
oveq12d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ 𝑛 = 0 ) → ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) = ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
128 |
|
elfz2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) ↔ ( ( 1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ ( 1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑠 ) ) ) |
129 |
|
zleltp1 |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑠 ∈ ℤ ) → ( 𝑖 ≤ 𝑠 ↔ 𝑖 < ( 𝑠 + 1 ) ) ) |
130 |
129
|
ancoms |
⊢ ( ( 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝑖 ≤ 𝑠 ↔ 𝑖 < ( 𝑠 + 1 ) ) ) |
131 |
130
|
3adant1 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝑖 ≤ 𝑠 ↔ 𝑖 < ( 𝑠 + 1 ) ) ) |
132 |
131
|
biimpcd |
⊢ ( 𝑖 ≤ 𝑠 → ( ( 1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → 𝑖 < ( 𝑠 + 1 ) ) ) |
133 |
132
|
adantl |
⊢ ( ( 1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑠 ) → ( ( 1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → 𝑖 < ( 𝑠 + 1 ) ) ) |
134 |
133
|
impcom |
⊢ ( ( ( 1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ ( 1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑠 ) ) → 𝑖 < ( 𝑠 + 1 ) ) |
135 |
134
|
orcd |
⊢ ( ( ( 1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ ( 1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑠 ) ) → ( 𝑖 < ( 𝑠 + 1 ) ∨ ( 𝑠 + 1 ) < 𝑖 ) ) |
136 |
|
zre |
⊢ ( 𝑠 ∈ ℤ → 𝑠 ∈ ℝ ) |
137 |
|
1red |
⊢ ( 𝑠 ∈ ℤ → 1 ∈ ℝ ) |
138 |
136 137
|
readdcld |
⊢ ( 𝑠 ∈ ℤ → ( 𝑠 + 1 ) ∈ ℝ ) |
139 |
|
zre |
⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℝ ) |
140 |
138 139
|
anim12ci |
⊢ ( ( 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝑖 ∈ ℝ ∧ ( 𝑠 + 1 ) ∈ ℝ ) ) |
141 |
140
|
3adant1 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝑖 ∈ ℝ ∧ ( 𝑠 + 1 ) ∈ ℝ ) ) |
142 |
|
lttri2 |
⊢ ( ( 𝑖 ∈ ℝ ∧ ( 𝑠 + 1 ) ∈ ℝ ) → ( 𝑖 ≠ ( 𝑠 + 1 ) ↔ ( 𝑖 < ( 𝑠 + 1 ) ∨ ( 𝑠 + 1 ) < 𝑖 ) ) ) |
143 |
141 142
|
syl |
⊢ ( ( 1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝑖 ≠ ( 𝑠 + 1 ) ↔ ( 𝑖 < ( 𝑠 + 1 ) ∨ ( 𝑠 + 1 ) < 𝑖 ) ) ) |
144 |
143
|
adantr |
⊢ ( ( ( 1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ ( 1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑠 ) ) → ( 𝑖 ≠ ( 𝑠 + 1 ) ↔ ( 𝑖 < ( 𝑠 + 1 ) ∨ ( 𝑠 + 1 ) < 𝑖 ) ) ) |
145 |
135 144
|
mpbird |
⊢ ( ( ( 1 ∈ ℤ ∧ 𝑠 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ ( 1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑠 ) ) → 𝑖 ≠ ( 𝑠 + 1 ) ) |
146 |
128 145
|
sylbi |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 ≠ ( 𝑠 + 1 ) ) |
147 |
146
|
ad2antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → 𝑖 ≠ ( 𝑠 + 1 ) ) |
148 |
|
neeq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ≠ ( 𝑠 + 1 ) ↔ 𝑖 ≠ ( 𝑠 + 1 ) ) ) |
149 |
148
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → ( 𝑛 ≠ ( 𝑠 + 1 ) ↔ 𝑖 ≠ ( 𝑠 + 1 ) ) ) |
150 |
147 149
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → 𝑛 ≠ ( 𝑠 + 1 ) ) |
151 |
150
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) → 𝑛 ≠ ( 𝑠 + 1 ) ) |
152 |
151
|
neneqd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) → ¬ 𝑛 = ( 𝑠 + 1 ) ) |
153 |
152
|
pm2.21d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) → ( 𝑛 = ( 𝑠 + 1 ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) = ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |
154 |
153
|
imp |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) ∧ 𝑛 = ( 𝑠 + 1 ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) = ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
155 |
104
|
nnred |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 ∈ ℝ ) |
156 |
|
eleq1w |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ∈ ℝ ↔ 𝑖 ∈ ℝ ) ) |
157 |
155 156
|
syl5ibrcom |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → ( 𝑛 = 𝑖 → 𝑛 ∈ ℝ ) ) |
158 |
157
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝑛 = 𝑖 → 𝑛 ∈ ℝ ) ) |
159 |
158
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → 𝑛 ∈ ℝ ) |
160 |
72
|
nn0red |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ℝ ) |
161 |
160
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → 𝑠 ∈ ℝ ) |
162 |
|
1red |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → 1 ∈ ℝ ) |
163 |
161 162
|
readdcld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → ( 𝑠 + 1 ) ∈ ℝ ) |
164 |
128 134
|
sylbi |
⊢ ( 𝑖 ∈ ( 1 ... 𝑠 ) → 𝑖 < ( 𝑠 + 1 ) ) |
165 |
164
|
ad2antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → 𝑖 < ( 𝑠 + 1 ) ) |
166 |
|
breq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 < ( 𝑠 + 1 ) ↔ 𝑖 < ( 𝑠 + 1 ) ) ) |
167 |
166
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → ( 𝑛 < ( 𝑠 + 1 ) ↔ 𝑖 < ( 𝑠 + 1 ) ) ) |
168 |
165 167
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → 𝑛 < ( 𝑠 + 1 ) ) |
169 |
159 163 168
|
ltnsymd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → ¬ ( 𝑠 + 1 ) < 𝑛 ) |
170 |
169
|
pm2.21d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → ( ( 𝑠 + 1 ) < 𝑛 → 0 = ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |
171 |
170
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) ∧ ¬ 𝑛 = ( 𝑠 + 1 ) ) → ( ( 𝑠 + 1 ) < 𝑛 → 0 = ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |
172 |
171
|
imp |
⊢ ( ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) ∧ ¬ 𝑛 = ( 𝑠 + 1 ) ) ∧ ( 𝑠 + 1 ) < 𝑛 ) → 0 = ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
173 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) ∧ ¬ 𝑛 = ( 𝑠 + 1 ) ) ∧ ¬ ( 𝑠 + 1 ) < 𝑛 ) → 𝑛 = 𝑖 ) |
174 |
173
|
fvoveq1d |
⊢ ( ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) ∧ ¬ 𝑛 = ( 𝑠 + 1 ) ) ∧ ¬ ( 𝑠 + 1 ) < 𝑛 ) → ( 𝑏 ‘ ( 𝑛 − 1 ) ) = ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) |
175 |
174
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) ∧ ¬ 𝑛 = ( 𝑠 + 1 ) ) ∧ ¬ ( 𝑠 + 1 ) < 𝑛 ) → ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) ) |
176 |
173
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) ∧ ¬ 𝑛 = ( 𝑠 + 1 ) ) ∧ ¬ ( 𝑠 + 1 ) < 𝑛 ) → ( 𝑏 ‘ 𝑛 ) = ( 𝑏 ‘ 𝑖 ) ) |
177 |
176
|
fveq2d |
⊢ ( ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) ∧ ¬ 𝑛 = ( 𝑠 + 1 ) ) ∧ ¬ ( 𝑠 + 1 ) < 𝑛 ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) |
178 |
177
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) ∧ ¬ 𝑛 = ( 𝑠 + 1 ) ) ∧ ¬ ( 𝑠 + 1 ) < 𝑛 ) → ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) = ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) |
179 |
175 178
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) ∧ ¬ 𝑛 = ( 𝑠 + 1 ) ) ∧ ¬ ( 𝑠 + 1 ) < 𝑛 ) → ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) = ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
180 |
172 179
|
ifeqda |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) ∧ ¬ 𝑛 = ( 𝑠 + 1 ) ) → if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) = ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
181 |
154 180
|
ifeqda |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) ∧ ¬ 𝑛 = 0 ) → if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) = ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
182 |
127 181
|
ifeqda |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) ∧ 𝑛 = 𝑖 ) → if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) = ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
183 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ∈ V ) |
184 |
9 182 106 183
|
fvmptd2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( 𝐺 ‘ 𝑖 ) = ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
185 |
184
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑠 ) ) → ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) = ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |
186 |
185
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) = ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) |
187 |
186
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) ) |
188 |
|
nn0p1gt0 |
⊢ ( 𝑠 ∈ ℕ0 → 0 < ( 𝑠 + 1 ) ) |
189 |
|
0red |
⊢ ( 𝑠 ∈ ℕ0 → 0 ∈ ℝ ) |
190 |
|
ltne |
⊢ ( ( 0 ∈ ℝ ∧ 0 < ( 𝑠 + 1 ) ) → ( 𝑠 + 1 ) ≠ 0 ) |
191 |
189 190
|
sylan |
⊢ ( ( 𝑠 ∈ ℕ0 ∧ 0 < ( 𝑠 + 1 ) ) → ( 𝑠 + 1 ) ≠ 0 ) |
192 |
|
neeq1 |
⊢ ( 𝑛 = ( 𝑠 + 1 ) → ( 𝑛 ≠ 0 ↔ ( 𝑠 + 1 ) ≠ 0 ) ) |
193 |
191 192
|
syl5ibrcom |
⊢ ( ( 𝑠 ∈ ℕ0 ∧ 0 < ( 𝑠 + 1 ) ) → ( 𝑛 = ( 𝑠 + 1 ) → 𝑛 ≠ 0 ) ) |
194 |
32 188 193
|
syl2anc2 |
⊢ ( 𝑠 ∈ ℕ → ( 𝑛 = ( 𝑠 + 1 ) → 𝑛 ≠ 0 ) ) |
195 |
194
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑛 = ( 𝑠 + 1 ) → 𝑛 ≠ 0 ) ) |
196 |
195
|
imp |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑛 = ( 𝑠 + 1 ) ) → 𝑛 ≠ 0 ) |
197 |
|
eqneqall |
⊢ ( 𝑛 = 0 → ( 𝑛 ≠ 0 → ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) |
198 |
196 197
|
mpan9 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑛 = ( 𝑠 + 1 ) ) ∧ 𝑛 = 0 ) → ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) |
199 |
|
iftrue |
⊢ ( 𝑛 = ( 𝑠 + 1 ) → if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) |
200 |
199
|
ad2antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑛 = ( 𝑠 + 1 ) ) ∧ ¬ 𝑛 = 0 ) → if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) |
201 |
198 200
|
ifeqda |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑛 = ( 𝑠 + 1 ) ) → if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) |
202 |
72 33
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑠 + 1 ) ∈ ℕ0 ) |
203 |
|
fvexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ∈ V ) |
204 |
9 201 202 203
|
fvmptd2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝐺 ‘ ( 𝑠 + 1 ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) |
205 |
204
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) = ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) |
206 |
8 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
207 |
13 206
|
syl3an2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
208 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
209 |
208 12
|
mgpbas |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) |
210 |
|
eqid |
⊢ ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) |
211 |
209 210 10
|
mulg0 |
⊢ ( ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) → ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) ) |
212 |
207 211
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) ) |
213 |
|
eqid |
⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) |
214 |
208 213
|
ringidval |
⊢ ( 1r ‘ 𝑌 ) = ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) |
215 |
212 214
|
eqtr4di |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( 1r ‘ 𝑌 ) ) |
216 |
215
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) = ( 1r ‘ 𝑌 ) ) |
217 |
216
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) = ( ( 1r ‘ 𝑌 ) × ( 𝐺 ‘ 0 ) ) ) |
218 |
52
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
219 |
1 2 3 4 5 6 7 8 9
|
chfacfisf |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) ) |
220 |
13 219
|
syl3anl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) ) |
221 |
220 79
|
ffvelrnd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝐺 ‘ 0 ) ∈ ( Base ‘ 𝑌 ) ) |
222 |
12 5 213
|
ringlidm |
⊢ ( ( 𝑌 ∈ Ring ∧ ( 𝐺 ‘ 0 ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 1r ‘ 𝑌 ) × ( 𝐺 ‘ 0 ) ) = ( 𝐺 ‘ 0 ) ) |
223 |
218 221 222
|
syl2an2r |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 1r ‘ 𝑌 ) × ( 𝐺 ‘ 0 ) ) = ( 𝐺 ‘ 0 ) ) |
224 |
|
iftrue |
⊢ ( 𝑛 = 0 → if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) = ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) |
225 |
|
ovexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ∈ V ) |
226 |
9 224 79 225
|
fvmptd3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝐺 ‘ 0 ) = ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) |
227 |
217 223 226
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) = ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) |
228 |
205 227
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) + ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ) = ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) + ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
229 |
12 11
|
cmncom |
⊢ ( ( 𝑌 ∈ CMnd ∧ ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) + ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) = ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) + ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ) ) |
230 |
20 81 94 229
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) + ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) = ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) + ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ) ) |
231 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
232 |
17 231
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Grp ) |
233 |
232
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑌 ∈ Grp ) |
234 |
205 94
|
eqeltrrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
235 |
17
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑌 ∈ Ring ) |
236 |
207
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
237 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑁 ∈ Fin ) |
238 |
13
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
239 |
238
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑅 ∈ Ring ) |
240 |
|
elmapi |
⊢ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) |
241 |
240
|
adantl |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) |
242 |
241
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) |
243 |
|
0elfz |
⊢ ( 𝑠 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑠 ) ) |
244 |
32 243
|
syl |
⊢ ( 𝑠 ∈ ℕ → 0 ∈ ( 0 ... 𝑠 ) ) |
245 |
244
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 0 ∈ ( 0 ... 𝑠 ) ) |
246 |
242 245
|
ffvelrnd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑏 ‘ 0 ) ∈ 𝐵 ) |
247 |
8 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑏 ‘ 0 ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ∈ ( Base ‘ 𝑌 ) ) |
248 |
237 239 246 247
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ∈ ( Base ‘ 𝑌 ) ) |
249 |
12 5
|
ringcl |
⊢ ( ( 𝑌 ∈ Ring ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
250 |
235 236 248 249
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
251 |
12 7 6 11
|
grpsubadd0sub |
⊢ ( ( 𝑌 ∈ Grp ∧ ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) = ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) + ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
252 |
233 234 250 251
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) = ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) + ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
253 |
228 230 252
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) + ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) = ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) |
254 |
187 253
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) + ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
255 |
111 254
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) + ( ( 0 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 0 ) ) ) + ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ ( 𝑠 + 1 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
256 |
73 100 255
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... ( 𝑠 + 1 ) ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |
257 |
38 71 256
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝐺 ‘ 𝑖 ) ) ) ) = ( ( 𝑌 Σg ( 𝑖 ∈ ( 1 ... 𝑠 ) ↦ ( ( 𝑖 ↑ ( 𝑇 ‘ 𝑀 ) ) × ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) + ( ( ( ( 𝑠 + 1 ) ↑ ( 𝑇 ‘ 𝑀 ) ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |