| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayhamlem1.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cayhamlem1.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cayhamlem1.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cayhamlem1.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cayhamlem1.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 6 |  | cayhamlem1.s | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 7 |  | cayhamlem1.0 | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 8 |  | cayhamlem1.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 9 |  | cayhamlem1.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) | 
						
							| 10 |  | cayhamlem1.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 11 |  | chfacfpmmulgsum.p | ⊢  +   =  ( +g ‘ 𝑌 ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 13 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 14 | 13 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 16 | 3 4 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  Ring ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Ring ) | 
						
							| 18 |  | ringcmn | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  CMnd ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  CMnd ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  CMnd ) | 
						
							| 21 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ℕ0  ∈  V ) | 
						
							| 23 |  | simpll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 ) ) | 
						
							| 24 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ℕ0 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 26 | 23 24 25 | 3jca | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑖  ∈  ℕ0 ) ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 10 | chfacfpmmulcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ℕ0 )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 10 | chfacfpmmulfsupp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) )  finSupp   0  ) | 
						
							| 30 |  | nn0disj | ⊢ ( ( 0 ... ( 𝑠  +  1 ) )  ∩  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) )  =  ∅ | 
						
							| 31 | 30 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 0 ... ( 𝑠  +  1 ) )  ∩  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) )  =  ∅ ) | 
						
							| 32 |  | nnnn0 | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℕ0 ) | 
						
							| 33 |  | peano2nn0 | ⊢ ( 𝑠  ∈  ℕ0  →  ( 𝑠  +  1 )  ∈  ℕ0 ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  +  1 )  ∈  ℕ0 ) | 
						
							| 35 |  | nn0split | ⊢ ( ( 𝑠  +  1 )  ∈  ℕ0  →  ℕ0  =  ( ( 0 ... ( 𝑠  +  1 ) )  ∪  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝑠  ∈  ℕ  →  ℕ0  =  ( ( 0 ... ( 𝑠  +  1 ) )  ∪  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) ) ) | 
						
							| 37 | 36 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ℕ0  =  ( ( 0 ... ( 𝑠  +  1 ) )  ∪  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) ) ) | 
						
							| 38 | 12 7 11 20 22 28 29 31 37 | gsumsplit2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 39 |  | simpll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 ) ) | 
						
							| 40 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) )  →  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 41 |  | nncn | ⊢ ( 𝑠  ∈  ℕ  →  𝑠  ∈  ℂ ) | 
						
							| 42 |  | add1p1 | ⊢ ( 𝑠  ∈  ℂ  →  ( ( 𝑠  +  1 )  +  1 )  =  ( 𝑠  +  2 ) ) | 
						
							| 43 | 41 42 | syl | ⊢ ( 𝑠  ∈  ℕ  →  ( ( 𝑠  +  1 )  +  1 )  =  ( 𝑠  +  2 ) ) | 
						
							| 44 | 43 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑠  +  1 )  +  1 )  =  ( 𝑠  +  2 ) ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑠  +  2 ) ) ) | 
						
							| 46 | 45 | eleq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↔  𝑖  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) ) ) ) | 
						
							| 47 | 46 | biimpa | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) )  →  𝑖  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) ) ) | 
						
							| 48 | 1 2 3 4 5 6 7 8 9 10 | chfacfpmmul0 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ ( 𝑠  +  2 ) ) )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) )  =   0  ) | 
						
							| 49 | 39 40 47 48 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) ) )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) )  =   0  ) | 
						
							| 50 | 49 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) )  =  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦   0  ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦   0  ) ) ) | 
						
							| 52 | 13 16 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  Ring ) | 
						
							| 53 |  | ringmnd | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Mnd ) | 
						
							| 54 | 52 53 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  Mnd ) | 
						
							| 55 | 54 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Mnd ) | 
						
							| 56 |  | fvex | ⊢ ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ∈  V | 
						
							| 57 | 55 56 | jctir | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑌  ∈  Mnd  ∧  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ∈  V ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  ∈  Mnd  ∧  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ∈  V ) ) | 
						
							| 59 | 7 | gsumz | ⊢ ( ( 𝑌  ∈  Mnd  ∧  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ∈  V )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦   0  ) )  =   0  ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦   0  ) )  =   0  ) | 
						
							| 61 | 51 60 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =   0  ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +   0  ) ) | 
						
							| 63 |  | fzfid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 0 ... ( 𝑠  +  1 ) )  ∈  Fin ) | 
						
							| 64 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 65 | 64 26 | sylan2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑖  ∈  ℕ0 ) ) | 
						
							| 66 | 65 27 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) ) )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 67 | 66 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ∀ 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) ) ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 68 | 12 20 63 67 | gsummptcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 69 | 12 11 7 | mndrid | ⊢ ( ( 𝑌  ∈  Mnd  ∧  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +   0  )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) ) ) | 
						
							| 70 | 55 68 69 | syl2an2r | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +   0  )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) ) ) | 
						
							| 71 | 62 70 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  ( ℤ≥ ‘ ( ( 𝑠  +  1 )  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) ) ) | 
						
							| 72 | 32 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 73 | 12 11 20 72 66 | gsummptfzsplit | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  { ( 𝑠  +  1 ) }  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 74 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑠 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 75 | 74 28 | sylan2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 76 | 12 11 20 72 75 | gsummptfzsplitl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  { 0 }  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 77 | 55 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  Mnd ) | 
						
							| 78 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 79 | 78 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  0  ∈  ℕ0 ) | 
						
							| 80 | 1 2 3 4 5 6 7 8 9 10 | chfacfpmmulcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  0  ∈  ℕ0 )  →  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 81 | 79 80 | mpd3an3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 82 |  | oveq1 | ⊢ ( 𝑖  =  0  →  ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( 0  ↑  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 83 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 84 | 82 83 | oveq12d | ⊢ ( 𝑖  =  0  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) )  =  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 85 | 12 84 | gsumsn | ⊢ ( ( 𝑌  ∈  Mnd  ∧  0  ∈  ℕ0  ∧  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  { 0 }  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 86 | 77 79 81 85 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  { 0 }  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 87 | 86 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  { 0 }  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) ) ) ) | 
						
							| 88 | 76 87 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) ) ) ) | 
						
							| 89 |  | ovexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑠  +  1 )  ∈  V ) | 
						
							| 90 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 91 | 90 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  1  ∈  ℕ0 ) | 
						
							| 92 | 72 91 | nn0addcld | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑠  +  1 )  ∈  ℕ0 ) | 
						
							| 93 | 1 2 3 4 5 6 7 8 9 10 | chfacfpmmulcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  ( 𝑠  +  1 )  ∈  ℕ0 )  →  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 94 | 92 93 | mpd3an3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 95 |  | oveq1 | ⊢ ( 𝑖  =  ( 𝑠  +  1 )  →  ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 96 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑠  +  1 )  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) | 
						
							| 97 | 95 96 | oveq12d | ⊢ ( 𝑖  =  ( 𝑠  +  1 )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) )  =  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) | 
						
							| 98 | 12 97 | gsumsn | ⊢ ( ( 𝑌  ∈  Mnd  ∧  ( 𝑠  +  1 )  ∈  V  ∧  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  { ( 𝑠  +  1 ) }  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) | 
						
							| 99 | 77 89 94 98 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  { ( 𝑠  +  1 ) }  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) | 
						
							| 100 | 88 99 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( 𝑌  Σg  ( 𝑖  ∈  { ( 𝑠  +  1 ) }  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) ) )  =  ( ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) ) )  +  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) ) | 
						
							| 101 |  | fzfid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 1 ... 𝑠 )  ∈  Fin ) | 
						
							| 102 |  | simpll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 ) ) | 
						
							| 103 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) ) | 
						
							| 104 |  | elfznn | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ∈  ℕ ) | 
						
							| 105 | 104 | nnnn0d | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 106 | 105 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 107 | 102 103 106 27 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 108 | 107 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ∀ 𝑖  ∈  ( 1 ... 𝑠 ) ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 109 | 12 20 101 108 | gsummptcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 110 | 12 11 | mndass | ⊢ ( ( 𝑌  ∈  Mnd  ∧  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  ∈  ( Base ‘ 𝑌 )  ∧  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 )  ∧  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) ) )  +  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  +  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) ) ) | 
						
							| 111 | 77 109 81 94 110 | syl13anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) ) )  +  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  +  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) ) ) | 
						
							| 112 | 104 | nnne0d | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ≠  0 ) | 
						
							| 113 | 112 | ad2antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑖  ≠  0 ) | 
						
							| 114 |  | neeq1 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛  ≠  0  ↔  𝑖  ≠  0 ) ) | 
						
							| 115 | 114 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  ( 𝑛  ≠  0  ↔  𝑖  ≠  0 ) ) | 
						
							| 116 | 113 115 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑛  ≠  0 ) | 
						
							| 117 |  | eqneqall | ⊢ ( 𝑛  =  0  →  ( 𝑛  ≠  0  →   0   =  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) ) ) | 
						
							| 118 | 116 117 | mpan9 | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →   0   =  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 119 |  | simplr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  𝑛  =  𝑖 ) | 
						
							| 120 |  | eqeq1 | ⊢ ( 0  =  𝑛  →  ( 0  =  𝑖  ↔  𝑛  =  𝑖 ) ) | 
						
							| 121 | 120 | eqcoms | ⊢ ( 𝑛  =  0  →  ( 0  =  𝑖  ↔  𝑛  =  𝑖 ) ) | 
						
							| 122 | 121 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  ( 0  =  𝑖  ↔  𝑛  =  𝑖 ) ) | 
						
							| 123 | 119 122 | mpbird | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  0  =  𝑖 ) | 
						
							| 124 | 123 | fveq2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  ( 𝑏 ‘ 0 )  =  ( 𝑏 ‘ 𝑖 ) ) | 
						
							| 125 | 124 | fveq2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) | 
						
							| 126 | 125 | oveq2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  =  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) | 
						
							| 127 | 118 126 | oveq12d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  𝑛  =  0 )  →  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 128 |  | elfz2 | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  ↔  ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  ( 1  ≤  𝑖  ∧  𝑖  ≤  𝑠 ) ) ) | 
						
							| 129 |  | zleltp1 | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑠  ∈  ℤ )  →  ( 𝑖  ≤  𝑠  ↔  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 130 | 129 | ancoms | ⊢ ( ( 𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ≤  𝑠  ↔  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 131 | 130 | 3adant1 | ⊢ ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ≤  𝑠  ↔  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 132 | 131 | biimpcd | ⊢ ( 𝑖  ≤  𝑠  →  ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 133 | 132 | adantl | ⊢ ( ( 1  ≤  𝑖  ∧  𝑖  ≤  𝑠 )  →  ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 134 | 133 | impcom | ⊢ ( ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  ( 1  ≤  𝑖  ∧  𝑖  ≤  𝑠 ) )  →  𝑖  <  ( 𝑠  +  1 ) ) | 
						
							| 135 | 134 | orcd | ⊢ ( ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  ( 1  ≤  𝑖  ∧  𝑖  ≤  𝑠 ) )  →  ( 𝑖  <  ( 𝑠  +  1 )  ∨  ( 𝑠  +  1 )  <  𝑖 ) ) | 
						
							| 136 |  | zre | ⊢ ( 𝑠  ∈  ℤ  →  𝑠  ∈  ℝ ) | 
						
							| 137 |  | 1red | ⊢ ( 𝑠  ∈  ℤ  →  1  ∈  ℝ ) | 
						
							| 138 | 136 137 | readdcld | ⊢ ( 𝑠  ∈  ℤ  →  ( 𝑠  +  1 )  ∈  ℝ ) | 
						
							| 139 |  | zre | ⊢ ( 𝑖  ∈  ℤ  →  𝑖  ∈  ℝ ) | 
						
							| 140 | 138 139 | anim12ci | ⊢ ( ( 𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ∈  ℝ  ∧  ( 𝑠  +  1 )  ∈  ℝ ) ) | 
						
							| 141 | 140 | 3adant1 | ⊢ ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ∈  ℝ  ∧  ( 𝑠  +  1 )  ∈  ℝ ) ) | 
						
							| 142 |  | lttri2 | ⊢ ( ( 𝑖  ∈  ℝ  ∧  ( 𝑠  +  1 )  ∈  ℝ )  →  ( 𝑖  ≠  ( 𝑠  +  1 )  ↔  ( 𝑖  <  ( 𝑠  +  1 )  ∨  ( 𝑠  +  1 )  <  𝑖 ) ) ) | 
						
							| 143 | 141 142 | syl | ⊢ ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ≠  ( 𝑠  +  1 )  ↔  ( 𝑖  <  ( 𝑠  +  1 )  ∨  ( 𝑠  +  1 )  <  𝑖 ) ) ) | 
						
							| 144 | 143 | adantr | ⊢ ( ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  ( 1  ≤  𝑖  ∧  𝑖  ≤  𝑠 ) )  →  ( 𝑖  ≠  ( 𝑠  +  1 )  ↔  ( 𝑖  <  ( 𝑠  +  1 )  ∨  ( 𝑠  +  1 )  <  𝑖 ) ) ) | 
						
							| 145 | 135 144 | mpbird | ⊢ ( ( ( 1  ∈  ℤ  ∧  𝑠  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  ( 1  ≤  𝑖  ∧  𝑖  ≤  𝑠 ) )  →  𝑖  ≠  ( 𝑠  +  1 ) ) | 
						
							| 146 | 128 145 | sylbi | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ≠  ( 𝑠  +  1 ) ) | 
						
							| 147 | 146 | ad2antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑖  ≠  ( 𝑠  +  1 ) ) | 
						
							| 148 |  | neeq1 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛  ≠  ( 𝑠  +  1 )  ↔  𝑖  ≠  ( 𝑠  +  1 ) ) ) | 
						
							| 149 | 148 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  ( 𝑛  ≠  ( 𝑠  +  1 )  ↔  𝑖  ≠  ( 𝑠  +  1 ) ) ) | 
						
							| 150 | 147 149 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑛  ≠  ( 𝑠  +  1 ) ) | 
						
							| 151 | 150 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  →  𝑛  ≠  ( 𝑠  +  1 ) ) | 
						
							| 152 | 151 | neneqd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  →  ¬  𝑛  =  ( 𝑠  +  1 ) ) | 
						
							| 153 | 152 | pm2.21d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  →  ( 𝑛  =  ( 𝑠  +  1 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 154 | 153 | imp | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  𝑛  =  ( 𝑠  +  1 ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 155 | 104 | nnred | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  ∈  ℝ ) | 
						
							| 156 |  | eleq1w | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛  ∈  ℝ  ↔  𝑖  ∈  ℝ ) ) | 
						
							| 157 | 155 156 | syl5ibrcom | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  ( 𝑛  =  𝑖  →  𝑛  ∈  ℝ ) ) | 
						
							| 158 | 157 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝑛  =  𝑖  →  𝑛  ∈  ℝ ) ) | 
						
							| 159 | 158 | imp | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑛  ∈  ℝ ) | 
						
							| 160 | 72 | nn0red | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 161 | 160 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑠  ∈  ℝ ) | 
						
							| 162 |  | 1red | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  1  ∈  ℝ ) | 
						
							| 163 | 161 162 | readdcld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  ( 𝑠  +  1 )  ∈  ℝ ) | 
						
							| 164 | 128 134 | sylbi | ⊢ ( 𝑖  ∈  ( 1 ... 𝑠 )  →  𝑖  <  ( 𝑠  +  1 ) ) | 
						
							| 165 | 164 | ad2antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑖  <  ( 𝑠  +  1 ) ) | 
						
							| 166 |  | breq1 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛  <  ( 𝑠  +  1 )  ↔  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 167 | 166 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  ( 𝑛  <  ( 𝑠  +  1 )  ↔  𝑖  <  ( 𝑠  +  1 ) ) ) | 
						
							| 168 | 165 167 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  𝑛  <  ( 𝑠  +  1 ) ) | 
						
							| 169 | 159 163 168 | ltnsymd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  ¬  ( 𝑠  +  1 )  <  𝑛 ) | 
						
							| 170 | 169 | pm2.21d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  ( ( 𝑠  +  1 )  <  𝑛  →   0   =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 171 | 170 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  →  ( ( 𝑠  +  1 )  <  𝑛  →   0   =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 172 | 171 | imp | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ( 𝑠  +  1 )  <  𝑛 )  →   0   =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 173 |  | simp-4r | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  𝑛  =  𝑖 ) | 
						
							| 174 | 173 | fvoveq1d | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( 𝑏 ‘ ( 𝑛  −  1 ) )  =  ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) | 
						
							| 175 | 174 | fveq2d | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) ) ) | 
						
							| 176 | 173 | fveq2d | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( 𝑏 ‘ 𝑛 )  =  ( 𝑏 ‘ 𝑖 ) ) | 
						
							| 177 | 176 | fveq2d | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) | 
						
							| 178 | 177 | oveq2d | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  =  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) | 
						
							| 179 | 175 178 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  ( 𝑠  +  1 )  <  𝑛 )  →  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 180 | 172 179 | ifeqda | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  ∧  ¬  𝑛  =  ( 𝑠  +  1 ) )  →  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 181 | 154 180 | ifeqda | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  ∧  ¬  𝑛  =  0 )  →  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 182 | 127 181 | ifeqda | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  ∧  𝑛  =  𝑖 )  →  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 183 |  | ovexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  ∈  V ) | 
						
							| 184 | 9 182 106 183 | fvmptd2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( 𝐺 ‘ 𝑖 )  =  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 185 | 184 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 1 ... 𝑠 ) )  →  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) )  =  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 186 | 185 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) )  =  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 187 | 186 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) ) | 
						
							| 188 |  | nn0p1gt0 | ⊢ ( 𝑠  ∈  ℕ0  →  0  <  ( 𝑠  +  1 ) ) | 
						
							| 189 |  | 0red | ⊢ ( 𝑠  ∈  ℕ0  →  0  ∈  ℝ ) | 
						
							| 190 |  | ltne | ⊢ ( ( 0  ∈  ℝ  ∧  0  <  ( 𝑠  +  1 ) )  →  ( 𝑠  +  1 )  ≠  0 ) | 
						
							| 191 | 189 190 | sylan | ⊢ ( ( 𝑠  ∈  ℕ0  ∧  0  <  ( 𝑠  +  1 ) )  →  ( 𝑠  +  1 )  ≠  0 ) | 
						
							| 192 |  | neeq1 | ⊢ ( 𝑛  =  ( 𝑠  +  1 )  →  ( 𝑛  ≠  0  ↔  ( 𝑠  +  1 )  ≠  0 ) ) | 
						
							| 193 | 191 192 | syl5ibrcom | ⊢ ( ( 𝑠  ∈  ℕ0  ∧  0  <  ( 𝑠  +  1 ) )  →  ( 𝑛  =  ( 𝑠  +  1 )  →  𝑛  ≠  0 ) ) | 
						
							| 194 | 32 188 193 | syl2anc2 | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑛  =  ( 𝑠  +  1 )  →  𝑛  ≠  0 ) ) | 
						
							| 195 | 194 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑛  =  ( 𝑠  +  1 )  →  𝑛  ≠  0 ) ) | 
						
							| 196 | 195 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  =  ( 𝑠  +  1 ) )  →  𝑛  ≠  0 ) | 
						
							| 197 |  | eqneqall | ⊢ ( 𝑛  =  0  →  ( 𝑛  ≠  0  →  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) | 
						
							| 198 | 196 197 | mpan9 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  =  ( 𝑠  +  1 ) )  ∧  𝑛  =  0 )  →  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) | 
						
							| 199 |  | iftrue | ⊢ ( 𝑛  =  ( 𝑠  +  1 )  →  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) | 
						
							| 200 | 199 | ad2antlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  =  ( 𝑠  +  1 ) )  ∧  ¬  𝑛  =  0 )  →  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) | 
						
							| 201 | 198 200 | ifeqda | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑛  =  ( 𝑠  +  1 ) )  →  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) | 
						
							| 202 | 72 33 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑠  +  1 )  ∈  ℕ0 ) | 
						
							| 203 |  | fvexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) )  ∈  V ) | 
						
							| 204 | 9 201 202 203 | fvmptd2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝐺 ‘ ( 𝑠  +  1 ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) | 
						
							| 205 | 204 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  =  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ) ) | 
						
							| 206 | 8 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 207 | 13 206 | syl3an2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 208 |  | eqid | ⊢ ( mulGrp ‘ 𝑌 )  =  ( mulGrp ‘ 𝑌 ) | 
						
							| 209 | 208 12 | mgpbas | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 210 |  | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 211 | 209 210 10 | mulg0 | ⊢ ( ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 )  →  ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 212 | 207 211 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 213 |  | eqid | ⊢ ( 1r ‘ 𝑌 )  =  ( 1r ‘ 𝑌 ) | 
						
							| 214 | 208 213 | ringidval | ⊢ ( 1r ‘ 𝑌 )  =  ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 215 | 212 214 | eqtr4di | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( 1r ‘ 𝑌 ) ) | 
						
							| 216 | 215 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  =  ( 1r ‘ 𝑌 ) ) | 
						
							| 217 | 216 | oveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  =  ( ( 1r ‘ 𝑌 )  ×  ( 𝐺 ‘ 0 ) ) ) | 
						
							| 218 | 52 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Ring ) | 
						
							| 219 | 1 2 3 4 5 6 7 8 9 | chfacfisf | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 220 | 13 219 | syl3anl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝐺 : ℕ0 ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 221 | 220 79 | ffvelcdmd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝐺 ‘ 0 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 222 | 12 5 213 | ringlidm | ⊢ ( ( 𝑌  ∈  Ring  ∧  ( 𝐺 ‘ 0 )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 1r ‘ 𝑌 )  ×  ( 𝐺 ‘ 0 ) )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 223 | 218 221 222 | syl2an2r | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 1r ‘ 𝑌 )  ×  ( 𝐺 ‘ 0 ) )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 224 |  | iftrue | ⊢ ( 𝑛  =  0  →  if ( 𝑛  =  0 ,  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ,  if ( 𝑛  =  ( 𝑠  +  1 ) ,  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) ,  if ( ( 𝑠  +  1 )  <  𝑛 ,   0  ,  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) | 
						
							| 225 |  | ovexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  ∈  V ) | 
						
							| 226 | 9 224 79 225 | fvmptd3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝐺 ‘ 0 )  =  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) | 
						
							| 227 | 217 223 226 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  =  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) | 
						
							| 228 | 205 227 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  +  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) ) )  =  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  +  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 229 | 12 11 | cmncom | ⊢ ( ( 𝑌  ∈  CMnd  ∧  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 )  ∧  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  +  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) )  =  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  +  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) ) ) ) | 
						
							| 230 | 20 81 94 229 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  +  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) )  =  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) )  +  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) ) ) ) | 
						
							| 231 |  | ringgrp | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Grp ) | 
						
							| 232 | 17 231 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Grp ) | 
						
							| 233 | 232 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  Grp ) | 
						
							| 234 | 205 94 | eqeltrrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 235 | 17 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  Ring ) | 
						
							| 236 | 207 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 237 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 238 | 13 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 239 | 238 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 240 |  | elmapi | ⊢ ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 241 | 240 | adantl | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 242 | 241 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 ) | 
						
							| 243 |  | 0elfz | ⊢ ( 𝑠  ∈  ℕ0  →  0  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 244 | 32 243 | syl | ⊢ ( 𝑠  ∈  ℕ  →  0  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 245 | 244 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  0  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 246 | 242 245 | ffvelcdmd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑏 ‘ 0 )  ∈  𝐵 ) | 
						
							| 247 | 8 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ 0 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 248 | 237 239 246 247 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 249 | 12 5 | ringcl | ⊢ ( ( 𝑌  ∈  Ring  ∧  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 )  ∧  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 250 | 235 236 248 249 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 251 | 12 7 6 11 | grpsubadd0sub | ⊢ ( ( 𝑌  ∈  Grp  ∧  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  ∈  ( Base ‘ 𝑌 )  ∧  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  =  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  +  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 252 | 233 234 250 251 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) )  =  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  +  (  0   −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 253 | 228 230 252 | 3eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  +  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) )  =  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) | 
						
							| 254 | 187 253 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) )  +  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 255 | 111 254 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  +  ( ( 0  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 0 ) ) )  +  ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ ( 𝑠  +  1 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 256 | 73 100 255 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... ( 𝑠  +  1 ) )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) | 
						
							| 257 | 38 71 256 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝐺 ‘ 𝑖 ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) ) |