| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayleyhamilton0.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | cayleyhamilton0.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | cayleyhamilton0.0 |  |-  .0. = ( 0g ` A ) | 
						
							| 4 |  | cayleyhamilton0.1 |  |-  .1. = ( 1r ` A ) | 
						
							| 5 |  | cayleyhamilton0.m |  |-  .* = ( .s ` A ) | 
						
							| 6 |  | cayleyhamilton0.e1 |  |-  .^ = ( .g ` ( mulGrp ` A ) ) | 
						
							| 7 |  | cayleyhamilton0.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 8 |  | cayleyhamilton0.k |  |-  K = ( coe1 ` ( C ` M ) ) | 
						
							| 9 |  | cayleyhamilton0.p |  |-  P = ( Poly1 ` R ) | 
						
							| 10 |  | cayleyhamilton0.y |  |-  Y = ( N Mat P ) | 
						
							| 11 |  | cayleyhamilton0.r |  |-  .X. = ( .r ` Y ) | 
						
							| 12 |  | cayleyhamilton0.s |  |-  .- = ( -g ` Y ) | 
						
							| 13 |  | cayleyhamilton0.z |  |-  Z = ( 0g ` Y ) | 
						
							| 14 |  | cayleyhamilton0.w |  |-  W = ( Base ` Y ) | 
						
							| 15 |  | cayleyhamilton0.e2 |  |-  E = ( .g ` ( mulGrp ` Y ) ) | 
						
							| 16 |  | cayleyhamilton0.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 17 |  | cayleyhamilton0.g |  |-  G = ( n e. NN0 |-> if ( n = 0 , ( Z .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , Z , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) | 
						
							| 18 |  | cayleyhamilton0.u |  |-  U = ( N cPolyMatToMat R ) | 
						
							| 19 |  | eqid |  |-  ( C ` M ) = ( C ` M ) | 
						
							| 20 | 1 2 9 10 11 12 13 16 7 19 17 14 4 5 18 6 15 | cayhamlem4 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) ) | 
						
							| 21 | 8 | eqcomi |  |-  ( coe1 ` ( C ` M ) ) = K | 
						
							| 22 | 21 | a1i |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ n e. NN0 ) -> ( coe1 ` ( C ` M ) ) = K ) | 
						
							| 23 | 22 | fveq1d |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( C ` M ) ) ` n ) = ( K ` n ) ) | 
						
							| 24 | 23 | oveq1d |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ n e. NN0 ) -> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) = ( ( K ` n ) .* ( n .^ M ) ) ) | 
						
							| 25 | 24 | mpteq2dva |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) = ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) ) | 
						
							| 27 | 26 | eqeq1d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) <-> ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) ) ) | 
						
							| 28 | 27 | biimpa |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) ) -> ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) ) | 
						
							| 29 |  | oveq1 |  |-  ( n = l -> ( n E ( T ` M ) ) = ( l E ( T ` M ) ) ) | 
						
							| 30 |  | fveq2 |  |-  ( n = l -> ( G ` n ) = ( G ` l ) ) | 
						
							| 31 | 29 30 | oveq12d |  |-  ( n = l -> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) = ( ( l E ( T ` M ) ) .X. ( G ` l ) ) ) | 
						
							| 32 | 31 | cbvmptv |  |-  ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) = ( l e. NN0 |-> ( ( l E ( T ` M ) ) .X. ( G ` l ) ) ) | 
						
							| 33 | 32 | oveq2i |  |-  ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) = ( Y gsum ( l e. NN0 |-> ( ( l E ( T ` M ) ) .X. ( G ` l ) ) ) ) | 
						
							| 34 | 1 2 9 10 11 12 13 16 17 15 | cayhamlem1 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( Y gsum ( l e. NN0 |-> ( ( l E ( T ` M ) ) .X. ( G ` l ) ) ) ) = Z ) | 
						
							| 35 | 33 34 | eqtrid |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) = Z ) | 
						
							| 36 |  | fveq2 |  |-  ( ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) = Z -> ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) = ( U ` Z ) ) | 
						
							| 37 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 38 | 37 | anim2i |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 39 | 38 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 40 |  | eqid |  |-  ( 0g ` A ) = ( 0g ` A ) | 
						
							| 41 | 1 18 9 10 40 13 | m2cpminv0 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( U ` Z ) = ( 0g ` A ) ) | 
						
							| 42 | 39 41 | syl |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( U ` Z ) = ( 0g ` A ) ) | 
						
							| 43 | 42 3 | eqtr4di |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( U ` Z ) = .0. ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( U ` Z ) = .0. ) | 
						
							| 45 | 36 44 | sylan9eqr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) = Z ) -> ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) = .0. ) | 
						
							| 46 | 35 45 | mpdan |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) = .0. ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) ) -> ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) = .0. ) | 
						
							| 48 | 28 47 | eqtrd |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) ) -> ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) = .0. ) | 
						
							| 49 | 48 | ex |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) -> ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) = .0. ) ) | 
						
							| 50 | 49 | rexlimdvva |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( E. s e. NN E. b e. ( B ^m ( 0 ... s ) ) ( A gsum ( n e. NN0 |-> ( ( ( coe1 ` ( C ` M ) ) ` n ) .* ( n .^ M ) ) ) ) = ( U ` ( Y gsum ( n e. NN0 |-> ( ( n E ( T ` M ) ) .X. ( G ` n ) ) ) ) ) -> ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) = .0. ) ) | 
						
							| 51 | 20 50 | mpd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( A gsum ( n e. NN0 |-> ( ( K ` n ) .* ( n .^ M ) ) ) ) = .0. ) |