Metamath Proof Explorer


Theorem fsuppmapnn0ub

Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019)

Ref Expression
Assertion fsuppmapnn0ub FR0ZVfinSuppZFm0x0m<xFx=Z

Proof

Step Hyp Ref Expression
1 simpr FR0ZVfinSuppZFfinSuppZF
2 1 fsuppimpd FR0ZVfinSuppZFFsuppZFin
3 2 ex FR0ZVfinSuppZFFsuppZFin
4 elmapfn FR0FFn0
5 4 adantr FR0ZVFFn0
6 nn0ex 0V
7 6 a1i FR0ZV0V
8 simpr FR0ZVZV
9 suppvalfn FFn00VZVFsuppZ=x0|FxZ
10 5 7 8 9 syl3anc FR0ZVFsuppZ=x0|FxZ
11 10 eleq1d FR0ZVFsuppZFinx0|FxZFin
12 rabssnn0fi x0|FxZFinm0x0m<x¬FxZ
13 nne ¬FxZFx=Z
14 13 imbi2i m<x¬FxZm<xFx=Z
15 14 ralbii x0m<x¬FxZx0m<xFx=Z
16 15 rexbii m0x0m<x¬FxZm0x0m<xFx=Z
17 12 16 sylbb x0|FxZFinm0x0m<xFx=Z
18 11 17 biimtrdi FR0ZVFsuppZFinm0x0m<xFx=Z
19 3 18 syld FR0ZVfinSuppZFm0x0m<xFx=Z