| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayhamlem2.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | cayhamlem2.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | cayhamlem2.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | cayhamlem2.1 |  |-  .1. = ( 1r ` A ) | 
						
							| 5 |  | cayhamlem2.m |  |-  .* = ( .s ` A ) | 
						
							| 6 |  | cayhamlem2.e |  |-  .^ = ( .g ` ( mulGrp ` A ) ) | 
						
							| 7 |  | cayhamlem2.r |  |-  .x. = ( .r ` A ) | 
						
							| 8 |  | elmapi |  |-  ( H e. ( K ^m NN0 ) -> H : NN0 --> K ) | 
						
							| 9 | 8 | ffvelcdmda |  |-  ( ( H e. ( K ^m NN0 ) /\ L e. NN0 ) -> ( H ` L ) e. K ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> ( H ` L ) e. K ) | 
						
							| 11 | 2 | matsca2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> R = ( Scalar ` A ) ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> R = ( Scalar ` A ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Base ` R ) = ( Base ` ( Scalar ` A ) ) ) | 
						
							| 14 | 1 13 | eqtr2id |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Base ` ( Scalar ` A ) ) = K ) | 
						
							| 15 | 14 | eleq2d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( H ` L ) e. ( Base ` ( Scalar ` A ) ) <-> ( H ` L ) e. K ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> ( ( H ` L ) e. ( Base ` ( Scalar ` A ) ) <-> ( H ` L ) e. K ) ) | 
						
							| 17 | 10 16 | mpbird |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> ( H ` L ) e. ( Base ` ( Scalar ` A ) ) ) | 
						
							| 18 |  | eqid |  |-  ( algSc ` A ) = ( algSc ` A ) | 
						
							| 19 |  | eqid |  |-  ( Scalar ` A ) = ( Scalar ` A ) | 
						
							| 20 |  | eqid |  |-  ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) | 
						
							| 21 | 18 19 20 5 4 | asclval |  |-  ( ( H ` L ) e. ( Base ` ( Scalar ` A ) ) -> ( ( algSc ` A ) ` ( H ` L ) ) = ( ( H ` L ) .* .1. ) ) | 
						
							| 22 | 17 21 | syl |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> ( ( algSc ` A ) ` ( H ` L ) ) = ( ( H ` L ) .* .1. ) ) | 
						
							| 23 | 22 | eqcomd |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> ( ( H ` L ) .* .1. ) = ( ( algSc ` A ) ` ( H ` L ) ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> ( ( L .^ M ) .x. ( ( H ` L ) .* .1. ) ) = ( ( L .^ M ) .x. ( ( algSc ` A ) ` ( H ` L ) ) ) ) | 
						
							| 25 | 2 | matassa |  |-  ( ( N e. Fin /\ R e. CRing ) -> A e. AssAlg ) | 
						
							| 26 | 25 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> A e. AssAlg ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> A e. AssAlg ) | 
						
							| 28 |  | eqid |  |-  ( mulGrp ` A ) = ( mulGrp ` A ) | 
						
							| 29 | 28 3 | mgpbas |  |-  B = ( Base ` ( mulGrp ` A ) ) | 
						
							| 30 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 31 | 30 | anim2i |  |-  ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 32 | 31 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 33 | 2 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 34 | 28 | ringmgp |  |-  ( A e. Ring -> ( mulGrp ` A ) e. Mnd ) | 
						
							| 35 | 32 33 34 | 3syl |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( mulGrp ` A ) e. Mnd ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> ( mulGrp ` A ) e. Mnd ) | 
						
							| 37 |  | simprr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> L e. NN0 ) | 
						
							| 38 |  | simpl3 |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> M e. B ) | 
						
							| 39 | 29 6 36 37 38 | mulgnn0cld |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> ( L .^ M ) e. B ) | 
						
							| 40 | 18 19 20 3 7 5 | asclmul2 |  |-  ( ( A e. AssAlg /\ ( H ` L ) e. ( Base ` ( Scalar ` A ) ) /\ ( L .^ M ) e. B ) -> ( ( L .^ M ) .x. ( ( algSc ` A ) ` ( H ` L ) ) ) = ( ( H ` L ) .* ( L .^ M ) ) ) | 
						
							| 41 | 27 17 39 40 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> ( ( L .^ M ) .x. ( ( algSc ` A ) ` ( H ` L ) ) ) = ( ( H ` L ) .* ( L .^ M ) ) ) | 
						
							| 42 | 24 41 | eqtr2d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( H e. ( K ^m NN0 ) /\ L e. NN0 ) ) -> ( ( H ` L ) .* ( L .^ M ) ) = ( ( L .^ M ) .x. ( ( H ` L ) .* .1. ) ) ) |