Step |
Hyp |
Ref |
Expression |
1 |
|
cramer.a |
|- A = ( N Mat R ) |
2 |
|
cramer.b |
|- B = ( Base ` A ) |
3 |
|
cramer.v |
|- V = ( ( Base ` R ) ^m N ) |
4 |
|
cramer.d |
|- D = ( N maDet R ) |
5 |
|
cramer.x |
|- .x. = ( R maVecMul <. N , N >. ) |
6 |
|
cramer.q |
|- ./ = ( /r ` R ) |
7 |
|
pm3.22 |
|- ( ( R e. CRing /\ N =/= (/) ) -> ( N =/= (/) /\ R e. CRing ) ) |
8 |
1 2 3 4 5 6
|
cramerlem3 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) -> ( X .x. Z ) = Y ) ) |
9 |
7 8
|
syl3an1 |
|- ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) -> ( X .x. Z ) = Y ) ) |
10 |
|
simpl1l |
|- ( ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> R e. CRing ) |
11 |
|
simpl2 |
|- ( ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> ( X e. B /\ Y e. V ) ) |
12 |
|
simpl3 |
|- ( ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> ( D ` X ) e. ( Unit ` R ) ) |
13 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
14 |
13
|
anim1ci |
|- ( ( R e. CRing /\ N =/= (/) ) -> ( N =/= (/) /\ R e. Ring ) ) |
15 |
14
|
anim1i |
|- ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) ) -> ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) ) |
16 |
15
|
3adant3 |
|- ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) ) |
17 |
1 2 3 5
|
slesolvec |
|- ( ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) -> ( ( X .x. Z ) = Y -> Z e. V ) ) |
18 |
17
|
imp |
|- ( ( ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) /\ ( X .x. Z ) = Y ) -> Z e. V ) |
19 |
16 18
|
sylan |
|- ( ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> Z e. V ) |
20 |
|
simpr |
|- ( ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> ( X .x. Z ) = Y ) |
21 |
1 2 3 4 5 6
|
cramerlem1 |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) ) |
22 |
10 11 12 19 20 21
|
syl113anc |
|- ( ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) ) |
23 |
22
|
ex |
|- ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( X .x. Z ) = Y -> Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) ) ) |
24 |
9 23
|
impbid |
|- ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) <-> ( X .x. Z ) = Y ) ) |