| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cramer.a |
|- A = ( N Mat R ) |
| 2 |
|
cramer.b |
|- B = ( Base ` A ) |
| 3 |
|
cramer.v |
|- V = ( ( Base ` R ) ^m N ) |
| 4 |
|
cramer.d |
|- D = ( N maDet R ) |
| 5 |
|
cramer.x |
|- .x. = ( R maVecMul <. N , N >. ) |
| 6 |
|
cramer.q |
|- ./ = ( /r ` R ) |
| 7 |
|
pm3.22 |
|- ( ( R e. CRing /\ N =/= (/) ) -> ( N =/= (/) /\ R e. CRing ) ) |
| 8 |
1 2 3 4 5 6
|
cramerlem3 |
|- ( ( ( N =/= (/) /\ R e. CRing ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) -> ( X .x. Z ) = Y ) ) |
| 9 |
7 8
|
syl3an1 |
|- ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) -> ( X .x. Z ) = Y ) ) |
| 10 |
|
simpl1l |
|- ( ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> R e. CRing ) |
| 11 |
|
simpl2 |
|- ( ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> ( X e. B /\ Y e. V ) ) |
| 12 |
|
simpl3 |
|- ( ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> ( D ` X ) e. ( Unit ` R ) ) |
| 13 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 14 |
13
|
anim1ci |
|- ( ( R e. CRing /\ N =/= (/) ) -> ( N =/= (/) /\ R e. Ring ) ) |
| 15 |
14
|
anim1i |
|- ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) ) -> ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) ) |
| 16 |
15
|
3adant3 |
|- ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) ) |
| 17 |
1 2 3 5
|
slesolvec |
|- ( ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) -> ( ( X .x. Z ) = Y -> Z e. V ) ) |
| 18 |
17
|
imp |
|- ( ( ( ( N =/= (/) /\ R e. Ring ) /\ ( X e. B /\ Y e. V ) ) /\ ( X .x. Z ) = Y ) -> Z e. V ) |
| 19 |
16 18
|
sylan |
|- ( ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> Z e. V ) |
| 20 |
|
simpr |
|- ( ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> ( X .x. Z ) = Y ) |
| 21 |
1 2 3 4 5 6
|
cramerlem1 |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) ) |
| 22 |
10 11 12 19 20 21
|
syl113anc |
|- ( ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) /\ ( X .x. Z ) = Y ) -> Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) ) |
| 23 |
22
|
ex |
|- ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( ( X .x. Z ) = Y -> Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) ) ) |
| 24 |
9 23
|
impbid |
|- ( ( ( R e. CRing /\ N =/= (/) ) /\ ( X e. B /\ Y e. V ) /\ ( D ` X ) e. ( Unit ` R ) ) -> ( Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) <-> ( X .x. Z ) = Y ) ) |