| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cramer.a |
|- A = ( N Mat R ) |
| 2 |
|
cramer.b |
|- B = ( Base ` A ) |
| 3 |
|
cramer.v |
|- V = ( ( Base ` R ) ^m N ) |
| 4 |
|
cramer.d |
|- D = ( N maDet R ) |
| 5 |
|
cramer.x |
|- .x. = ( R maVecMul <. N , N >. ) |
| 6 |
|
cramer.q |
|- ./ = ( /r ` R ) |
| 7 |
|
simp1 |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> R e. CRing ) |
| 8 |
7
|
anim1i |
|- ( ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) /\ a e. N ) -> ( R e. CRing /\ a e. N ) ) |
| 9 |
|
simpl2 |
|- ( ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) /\ a e. N ) -> ( X e. B /\ Y e. V ) ) |
| 10 |
|
pm3.22 |
|- ( ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) -> ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) |
| 11 |
10
|
3adant2 |
|- ( ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) -> ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) |
| 12 |
11
|
3ad2ant3 |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) |
| 13 |
12
|
adantr |
|- ( ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) /\ a e. N ) -> ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) |
| 14 |
|
eqid |
|- ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` a ) = ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` a ) |
| 15 |
|
eqid |
|- ( ( X ( N matRepV R ) Y ) ` a ) = ( ( X ( N matRepV R ) Y ) ` a ) |
| 16 |
1 2 3 14 15 5 4 6
|
cramerimp |
|- ( ( ( R e. CRing /\ a e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( Z ` a ) = ( ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) ./ ( D ` X ) ) ) |
| 17 |
8 9 13 16
|
syl3anc |
|- ( ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) /\ a e. N ) -> ( Z ` a ) = ( ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) ./ ( D ` X ) ) ) |
| 18 |
17
|
ralrimiva |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> A. a e. N ( Z ` a ) = ( ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) ./ ( D ` X ) ) ) |
| 19 |
|
elmapfn |
|- ( Z e. ( ( Base ` R ) ^m N ) -> Z Fn N ) |
| 20 |
19 3
|
eleq2s |
|- ( Z e. V -> Z Fn N ) |
| 21 |
20
|
3ad2ant2 |
|- ( ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) -> Z Fn N ) |
| 22 |
21
|
3ad2ant3 |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> Z Fn N ) |
| 23 |
|
2fveq3 |
|- ( a = i -> ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) = ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ) |
| 24 |
23
|
oveq1d |
|- ( a = i -> ( ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) ./ ( D ` X ) ) = ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) |
| 25 |
|
ovexd |
|- ( ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) /\ a e. N ) -> ( ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) ./ ( D ` X ) ) e. _V ) |
| 26 |
|
ovexd |
|- ( ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) /\ i e. N ) -> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) e. _V ) |
| 27 |
22 24 25 26
|
fnmptfvd |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> ( Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) <-> A. a e. N ( Z ` a ) = ( ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) ./ ( D ` X ) ) ) ) |
| 28 |
18 27
|
mpbird |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) ) |