Step |
Hyp |
Ref |
Expression |
1 |
|
cramer.a |
|- A = ( N Mat R ) |
2 |
|
cramer.b |
|- B = ( Base ` A ) |
3 |
|
cramer.v |
|- V = ( ( Base ` R ) ^m N ) |
4 |
|
cramer.d |
|- D = ( N maDet R ) |
5 |
|
cramer.x |
|- .x. = ( R maVecMul <. N , N >. ) |
6 |
|
cramer.q |
|- ./ = ( /r ` R ) |
7 |
|
simp1 |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> R e. CRing ) |
8 |
7
|
anim1i |
|- ( ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) /\ a e. N ) -> ( R e. CRing /\ a e. N ) ) |
9 |
|
simpl2 |
|- ( ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) /\ a e. N ) -> ( X e. B /\ Y e. V ) ) |
10 |
|
pm3.22 |
|- ( ( ( D ` X ) e. ( Unit ` R ) /\ ( X .x. Z ) = Y ) -> ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) |
11 |
10
|
3adant2 |
|- ( ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) -> ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) |
12 |
11
|
3ad2ant3 |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) |
13 |
12
|
adantr |
|- ( ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) /\ a e. N ) -> ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) |
14 |
|
eqid |
|- ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` a ) = ( ( ( 1r ` A ) ( N matRepV R ) Z ) ` a ) |
15 |
|
eqid |
|- ( ( X ( N matRepV R ) Y ) ` a ) = ( ( X ( N matRepV R ) Y ) ` a ) |
16 |
1 2 3 14 15 5 4 6
|
cramerimp |
|- ( ( ( R e. CRing /\ a e. N ) /\ ( X e. B /\ Y e. V ) /\ ( ( X .x. Z ) = Y /\ ( D ` X ) e. ( Unit ` R ) ) ) -> ( Z ` a ) = ( ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) ./ ( D ` X ) ) ) |
17 |
8 9 13 16
|
syl3anc |
|- ( ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) /\ a e. N ) -> ( Z ` a ) = ( ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) ./ ( D ` X ) ) ) |
18 |
17
|
ralrimiva |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> A. a e. N ( Z ` a ) = ( ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) ./ ( D ` X ) ) ) |
19 |
|
elmapfn |
|- ( Z e. ( ( Base ` R ) ^m N ) -> Z Fn N ) |
20 |
19 3
|
eleq2s |
|- ( Z e. V -> Z Fn N ) |
21 |
20
|
3ad2ant2 |
|- ( ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) -> Z Fn N ) |
22 |
21
|
3ad2ant3 |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> Z Fn N ) |
23 |
|
2fveq3 |
|- ( a = i -> ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) = ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ) |
24 |
23
|
oveq1d |
|- ( a = i -> ( ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) ./ ( D ` X ) ) = ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) |
25 |
|
ovexd |
|- ( ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) /\ a e. N ) -> ( ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) ./ ( D ` X ) ) e. _V ) |
26 |
|
ovexd |
|- ( ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) /\ i e. N ) -> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) e. _V ) |
27 |
22 24 25 26
|
fnmptfvd |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> ( Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) <-> A. a e. N ( Z ` a ) = ( ( D ` ( ( X ( N matRepV R ) Y ) ` a ) ) ./ ( D ` X ) ) ) ) |
28 |
18 27
|
mpbird |
|- ( ( R e. CRing /\ ( X e. B /\ Y e. V ) /\ ( ( D ` X ) e. ( Unit ` R ) /\ Z e. V /\ ( X .x. Z ) = Y ) ) -> Z = ( i e. N |-> ( ( D ` ( ( X ( N matRepV R ) Y ) ` i ) ) ./ ( D ` X ) ) ) ) |