| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cusgrsizeindb0.v |
|- V = ( Vtx ` G ) |
| 2 |
|
cusgrsizeindb0.e |
|- E = ( Edg ` G ) |
| 3 |
1 2
|
uhgr0vsize0 |
|- ( ( G e. UHGraph /\ ( # ` V ) = 0 ) -> ( # ` E ) = 0 ) |
| 4 |
|
oveq1 |
|- ( ( # ` V ) = 0 -> ( ( # ` V ) _C 2 ) = ( 0 _C 2 ) ) |
| 5 |
|
2nn |
|- 2 e. NN |
| 6 |
|
bc0k |
|- ( 2 e. NN -> ( 0 _C 2 ) = 0 ) |
| 7 |
5 6
|
ax-mp |
|- ( 0 _C 2 ) = 0 |
| 8 |
4 7
|
eqtr2di |
|- ( ( # ` V ) = 0 -> 0 = ( ( # ` V ) _C 2 ) ) |
| 9 |
8
|
adantl |
|- ( ( G e. UHGraph /\ ( # ` V ) = 0 ) -> 0 = ( ( # ` V ) _C 2 ) ) |
| 10 |
3 9
|
eqtrd |
|- ( ( G e. UHGraph /\ ( # ` V ) = 0 ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) |