| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cusgrsizeindb0.v |
|- V = ( Vtx ` G ) |
| 2 |
|
cusgrsizeindb0.e |
|- E = ( Edg ` G ) |
| 3 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 4 |
2 3
|
eqtri |
|- E = ran ( iEdg ` G ) |
| 5 |
4
|
a1i |
|- ( ( G e. ComplUSGraph /\ V e. Fin ) -> E = ran ( iEdg ` G ) ) |
| 6 |
5
|
fveq2d |
|- ( ( G e. ComplUSGraph /\ V e. Fin ) -> ( # ` E ) = ( # ` ran ( iEdg ` G ) ) ) |
| 7 |
1
|
opeq1i |
|- <. V , ( iEdg ` G ) >. = <. ( Vtx ` G ) , ( iEdg ` G ) >. |
| 8 |
|
cusgrop |
|- ( G e. ComplUSGraph -> <. ( Vtx ` G ) , ( iEdg ` G ) >. e. ComplUSGraph ) |
| 9 |
7 8
|
eqeltrid |
|- ( G e. ComplUSGraph -> <. V , ( iEdg ` G ) >. e. ComplUSGraph ) |
| 10 |
|
fvex |
|- ( iEdg ` G ) e. _V |
| 11 |
|
fvex |
|- ( Edg ` <. v , e >. ) e. _V |
| 12 |
|
rabexg |
|- ( ( Edg ` <. v , e >. ) e. _V -> { c e. ( Edg ` <. v , e >. ) | n e/ c } e. _V ) |
| 13 |
12
|
resiexd |
|- ( ( Edg ` <. v , e >. ) e. _V -> ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) e. _V ) |
| 14 |
11 13
|
ax-mp |
|- ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) e. _V |
| 15 |
|
rneq |
|- ( e = ( iEdg ` G ) -> ran e = ran ( iEdg ` G ) ) |
| 16 |
15
|
fveq2d |
|- ( e = ( iEdg ` G ) -> ( # ` ran e ) = ( # ` ran ( iEdg ` G ) ) ) |
| 17 |
|
fveq2 |
|- ( v = V -> ( # ` v ) = ( # ` V ) ) |
| 18 |
17
|
oveq1d |
|- ( v = V -> ( ( # ` v ) _C 2 ) = ( ( # ` V ) _C 2 ) ) |
| 19 |
16 18
|
eqeqan12rd |
|- ( ( v = V /\ e = ( iEdg ` G ) ) -> ( ( # ` ran e ) = ( ( # ` v ) _C 2 ) <-> ( # ` ran ( iEdg ` G ) ) = ( ( # ` V ) _C 2 ) ) ) |
| 20 |
|
rneq |
|- ( e = f -> ran e = ran f ) |
| 21 |
20
|
fveq2d |
|- ( e = f -> ( # ` ran e ) = ( # ` ran f ) ) |
| 22 |
|
fveq2 |
|- ( v = w -> ( # ` v ) = ( # ` w ) ) |
| 23 |
22
|
oveq1d |
|- ( v = w -> ( ( # ` v ) _C 2 ) = ( ( # ` w ) _C 2 ) ) |
| 24 |
21 23
|
eqeqan12rd |
|- ( ( v = w /\ e = f ) -> ( ( # ` ran e ) = ( ( # ` v ) _C 2 ) <-> ( # ` ran f ) = ( ( # ` w ) _C 2 ) ) ) |
| 25 |
|
vex |
|- v e. _V |
| 26 |
|
vex |
|- e e. _V |
| 27 |
25 26
|
opvtxfvi |
|- ( Vtx ` <. v , e >. ) = v |
| 28 |
27
|
eqcomi |
|- v = ( Vtx ` <. v , e >. ) |
| 29 |
|
eqid |
|- ( Edg ` <. v , e >. ) = ( Edg ` <. v , e >. ) |
| 30 |
|
eqid |
|- { c e. ( Edg ` <. v , e >. ) | n e/ c } = { c e. ( Edg ` <. v , e >. ) | n e/ c } |
| 31 |
|
eqid |
|- <. ( v \ { n } ) , ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) >. = <. ( v \ { n } ) , ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) >. |
| 32 |
28 29 30 31
|
cusgrres |
|- ( ( <. v , e >. e. ComplUSGraph /\ n e. v ) -> <. ( v \ { n } ) , ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) >. e. ComplUSGraph ) |
| 33 |
|
rneq |
|- ( f = ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) -> ran f = ran ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) |
| 34 |
33
|
fveq2d |
|- ( f = ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) -> ( # ` ran f ) = ( # ` ran ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) ) |
| 35 |
34
|
adantl |
|- ( ( w = ( v \ { n } ) /\ f = ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) -> ( # ` ran f ) = ( # ` ran ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) ) |
| 36 |
|
fveq2 |
|- ( w = ( v \ { n } ) -> ( # ` w ) = ( # ` ( v \ { n } ) ) ) |
| 37 |
36
|
adantr |
|- ( ( w = ( v \ { n } ) /\ f = ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) -> ( # ` w ) = ( # ` ( v \ { n } ) ) ) |
| 38 |
37
|
oveq1d |
|- ( ( w = ( v \ { n } ) /\ f = ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) -> ( ( # ` w ) _C 2 ) = ( ( # ` ( v \ { n } ) ) _C 2 ) ) |
| 39 |
35 38
|
eqeq12d |
|- ( ( w = ( v \ { n } ) /\ f = ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) -> ( ( # ` ran f ) = ( ( # ` w ) _C 2 ) <-> ( # ` ran ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) = ( ( # ` ( v \ { n } ) ) _C 2 ) ) ) |
| 40 |
|
edgopval |
|- ( ( v e. _V /\ e e. _V ) -> ( Edg ` <. v , e >. ) = ran e ) |
| 41 |
40
|
el2v |
|- ( Edg ` <. v , e >. ) = ran e |
| 42 |
41
|
a1i |
|- ( ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = 0 ) -> ( Edg ` <. v , e >. ) = ran e ) |
| 43 |
42
|
eqcomd |
|- ( ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = 0 ) -> ran e = ( Edg ` <. v , e >. ) ) |
| 44 |
43
|
fveq2d |
|- ( ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = 0 ) -> ( # ` ran e ) = ( # ` ( Edg ` <. v , e >. ) ) ) |
| 45 |
|
cusgrusgr |
|- ( <. v , e >. e. ComplUSGraph -> <. v , e >. e. USGraph ) |
| 46 |
|
usgruhgr |
|- ( <. v , e >. e. USGraph -> <. v , e >. e. UHGraph ) |
| 47 |
45 46
|
syl |
|- ( <. v , e >. e. ComplUSGraph -> <. v , e >. e. UHGraph ) |
| 48 |
28 29
|
cusgrsizeindb0 |
|- ( ( <. v , e >. e. UHGraph /\ ( # ` v ) = 0 ) -> ( # ` ( Edg ` <. v , e >. ) ) = ( ( # ` v ) _C 2 ) ) |
| 49 |
47 48
|
sylan |
|- ( ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = 0 ) -> ( # ` ( Edg ` <. v , e >. ) ) = ( ( # ` v ) _C 2 ) ) |
| 50 |
44 49
|
eqtrd |
|- ( ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = 0 ) -> ( # ` ran e ) = ( ( # ` v ) _C 2 ) ) |
| 51 |
|
rnresi |
|- ran ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) = { c e. ( Edg ` <. v , e >. ) | n e/ c } |
| 52 |
51
|
fveq2i |
|- ( # ` ran ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) = ( # ` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) |
| 53 |
41
|
a1i |
|- ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) -> ( Edg ` <. v , e >. ) = ran e ) |
| 54 |
53
|
rabeqdv |
|- ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) -> { c e. ( Edg ` <. v , e >. ) | n e/ c } = { c e. ran e | n e/ c } ) |
| 55 |
54
|
fveq2d |
|- ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) -> ( # ` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) = ( # ` { c e. ran e | n e/ c } ) ) |
| 56 |
52 55
|
eqtrid |
|- ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) -> ( # ` ran ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) = ( # ` { c e. ran e | n e/ c } ) ) |
| 57 |
56
|
eqeq1d |
|- ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) -> ( ( # ` ran ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) = ( ( # ` ( v \ { n } ) ) _C 2 ) <-> ( # ` { c e. ran e | n e/ c } ) = ( ( # ` ( v \ { n } ) ) _C 2 ) ) ) |
| 58 |
57
|
biimpd |
|- ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) -> ( ( # ` ran ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) = ( ( # ` ( v \ { n } ) ) _C 2 ) -> ( # ` { c e. ran e | n e/ c } ) = ( ( # ` ( v \ { n } ) ) _C 2 ) ) ) |
| 59 |
58
|
imdistani |
|- ( ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ( # ` ran ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) = ( ( # ` ( v \ { n } ) ) _C 2 ) ) -> ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ( # ` { c e. ran e | n e/ c } ) = ( ( # ` ( v \ { n } ) ) _C 2 ) ) ) |
| 60 |
41
|
eqcomi |
|- ran e = ( Edg ` <. v , e >. ) |
| 61 |
|
eqid |
|- { c e. ran e | n e/ c } = { c e. ran e | n e/ c } |
| 62 |
28 60 61
|
cusgrsize2inds |
|- ( ( y + 1 ) e. NN0 -> ( ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) -> ( ( # ` { c e. ran e | n e/ c } ) = ( ( # ` ( v \ { n } ) ) _C 2 ) -> ( # ` ran e ) = ( ( # ` v ) _C 2 ) ) ) ) |
| 63 |
62
|
imp31 |
|- ( ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ( # ` { c e. ran e | n e/ c } ) = ( ( # ` ( v \ { n } ) ) _C 2 ) ) -> ( # ` ran e ) = ( ( # ` v ) _C 2 ) ) |
| 64 |
59 63
|
syl |
|- ( ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. ComplUSGraph /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ( # ` ran ( _I |` { c e. ( Edg ` <. v , e >. ) | n e/ c } ) ) = ( ( # ` ( v \ { n } ) ) _C 2 ) ) -> ( # ` ran e ) = ( ( # ` v ) _C 2 ) ) |
| 65 |
10 14 19 24 32 39 50 64
|
opfi1ind |
|- ( ( <. V , ( iEdg ` G ) >. e. ComplUSGraph /\ V e. Fin ) -> ( # ` ran ( iEdg ` G ) ) = ( ( # ` V ) _C 2 ) ) |
| 66 |
9 65
|
sylan |
|- ( ( G e. ComplUSGraph /\ V e. Fin ) -> ( # ` ran ( iEdg ` G ) ) = ( ( # ` V ) _C 2 ) ) |
| 67 |
6 66
|
eqtrd |
|- ( ( G e. ComplUSGraph /\ V e. Fin ) -> ( # ` E ) = ( ( # ` V ) _C 2 ) ) |