| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cusgrres.v |
|- V = ( Vtx ` G ) |
| 2 |
|
cusgrres.e |
|- E = ( Edg ` G ) |
| 3 |
|
cusgrres.f |
|- F = { e e. E | N e/ e } |
| 4 |
|
cusgrres.s |
|- S = <. ( V \ { N } ) , ( _I |` F ) >. |
| 5 |
|
cusgrusgr |
|- ( G e. ComplUSGraph -> G e. USGraph ) |
| 6 |
1 2 3 4
|
usgrres1 |
|- ( ( G e. USGraph /\ N e. V ) -> S e. USGraph ) |
| 7 |
5 6
|
sylan |
|- ( ( G e. ComplUSGraph /\ N e. V ) -> S e. USGraph ) |
| 8 |
|
iscusgr |
|- ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) ) |
| 9 |
|
usgrupgr |
|- ( G e. USGraph -> G e. UPGraph ) |
| 10 |
9
|
adantr |
|- ( ( G e. USGraph /\ G e. ComplGraph ) -> G e. UPGraph ) |
| 11 |
10
|
anim1i |
|- ( ( ( G e. USGraph /\ G e. ComplGraph ) /\ N e. V ) -> ( G e. UPGraph /\ N e. V ) ) |
| 12 |
11
|
anim1i |
|- ( ( ( ( G e. USGraph /\ G e. ComplGraph ) /\ N e. V ) /\ v e. ( V \ { N } ) ) -> ( ( G e. UPGraph /\ N e. V ) /\ v e. ( V \ { N } ) ) ) |
| 13 |
1
|
iscplgr |
|- ( G e. USGraph -> ( G e. ComplGraph <-> A. n e. V n e. ( UnivVtx ` G ) ) ) |
| 14 |
|
eldifi |
|- ( v e. ( V \ { N } ) -> v e. V ) |
| 15 |
14
|
ad2antll |
|- ( ( G e. USGraph /\ ( N e. V /\ v e. ( V \ { N } ) ) ) -> v e. V ) |
| 16 |
|
eleq1w |
|- ( n = v -> ( n e. ( UnivVtx ` G ) <-> v e. ( UnivVtx ` G ) ) ) |
| 17 |
16
|
rspcv |
|- ( v e. V -> ( A. n e. V n e. ( UnivVtx ` G ) -> v e. ( UnivVtx ` G ) ) ) |
| 18 |
15 17
|
syl |
|- ( ( G e. USGraph /\ ( N e. V /\ v e. ( V \ { N } ) ) ) -> ( A. n e. V n e. ( UnivVtx ` G ) -> v e. ( UnivVtx ` G ) ) ) |
| 19 |
18
|
ex |
|- ( G e. USGraph -> ( ( N e. V /\ v e. ( V \ { N } ) ) -> ( A. n e. V n e. ( UnivVtx ` G ) -> v e. ( UnivVtx ` G ) ) ) ) |
| 20 |
19
|
com23 |
|- ( G e. USGraph -> ( A. n e. V n e. ( UnivVtx ` G ) -> ( ( N e. V /\ v e. ( V \ { N } ) ) -> v e. ( UnivVtx ` G ) ) ) ) |
| 21 |
13 20
|
sylbid |
|- ( G e. USGraph -> ( G e. ComplGraph -> ( ( N e. V /\ v e. ( V \ { N } ) ) -> v e. ( UnivVtx ` G ) ) ) ) |
| 22 |
21
|
imp |
|- ( ( G e. USGraph /\ G e. ComplGraph ) -> ( ( N e. V /\ v e. ( V \ { N } ) ) -> v e. ( UnivVtx ` G ) ) ) |
| 23 |
22
|
impl |
|- ( ( ( ( G e. USGraph /\ G e. ComplGraph ) /\ N e. V ) /\ v e. ( V \ { N } ) ) -> v e. ( UnivVtx ` G ) ) |
| 24 |
1 2 3 4
|
uvtxupgrres |
|- ( ( ( G e. UPGraph /\ N e. V ) /\ v e. ( V \ { N } ) ) -> ( v e. ( UnivVtx ` G ) -> v e. ( UnivVtx ` S ) ) ) |
| 25 |
12 23 24
|
sylc |
|- ( ( ( ( G e. USGraph /\ G e. ComplGraph ) /\ N e. V ) /\ v e. ( V \ { N } ) ) -> v e. ( UnivVtx ` S ) ) |
| 26 |
25
|
ralrimiva |
|- ( ( ( G e. USGraph /\ G e. ComplGraph ) /\ N e. V ) -> A. v e. ( V \ { N } ) v e. ( UnivVtx ` S ) ) |
| 27 |
8 26
|
sylanb |
|- ( ( G e. ComplUSGraph /\ N e. V ) -> A. v e. ( V \ { N } ) v e. ( UnivVtx ` S ) ) |
| 28 |
|
opex |
|- <. ( V \ { N } ) , ( _I |` F ) >. e. _V |
| 29 |
4 28
|
eqeltri |
|- S e. _V |
| 30 |
1 2 3 4
|
upgrres1lem2 |
|- ( Vtx ` S ) = ( V \ { N } ) |
| 31 |
30
|
eqcomi |
|- ( V \ { N } ) = ( Vtx ` S ) |
| 32 |
31
|
iscplgr |
|- ( S e. _V -> ( S e. ComplGraph <-> A. v e. ( V \ { N } ) v e. ( UnivVtx ` S ) ) ) |
| 33 |
29 32
|
mp1i |
|- ( ( G e. ComplUSGraph /\ N e. V ) -> ( S e. ComplGraph <-> A. v e. ( V \ { N } ) v e. ( UnivVtx ` S ) ) ) |
| 34 |
27 33
|
mpbird |
|- ( ( G e. ComplUSGraph /\ N e. V ) -> S e. ComplGraph ) |
| 35 |
|
iscusgr |
|- ( S e. ComplUSGraph <-> ( S e. USGraph /\ S e. ComplGraph ) ) |
| 36 |
7 34 35
|
sylanbrc |
|- ( ( G e. ComplUSGraph /\ N e. V ) -> S e. ComplUSGraph ) |