Metamath Proof Explorer


Theorem cusgrres

Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018)

Ref Expression
Hypotheses cusgrres.v 𝑉 = ( Vtx ‘ 𝐺 )
cusgrres.e 𝐸 = ( Edg ‘ 𝐺 )
cusgrres.f 𝐹 = { 𝑒𝐸𝑁𝑒 }
cusgrres.s 𝑆 = ⟨ ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) ⟩
Assertion cusgrres ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉 ) → 𝑆 ∈ ComplUSGraph )

Proof

Step Hyp Ref Expression
1 cusgrres.v 𝑉 = ( Vtx ‘ 𝐺 )
2 cusgrres.e 𝐸 = ( Edg ‘ 𝐺 )
3 cusgrres.f 𝐹 = { 𝑒𝐸𝑁𝑒 }
4 cusgrres.s 𝑆 = ⟨ ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) ⟩
5 cusgrusgr ( 𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph )
6 1 2 3 4 usgrres1 ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) → 𝑆 ∈ USGraph )
7 5 6 sylan ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉 ) → 𝑆 ∈ USGraph )
8 iscusgr ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) )
9 usgrupgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph )
10 9 adantr ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) → 𝐺 ∈ UPGraph )
11 10 anim1i ( ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ∧ 𝑁𝑉 ) → ( 𝐺 ∈ UPGraph ∧ 𝑁𝑉 ) )
12 11 anim1i ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ∧ 𝑁𝑉 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( 𝐺 ∈ UPGraph ∧ 𝑁𝑉 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) )
13 1 iscplgr ( 𝐺 ∈ USGraph → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑛𝑉 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) ) )
14 eldifi ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑣𝑉 )
15 14 ad2antll ( ( 𝐺 ∈ USGraph ∧ ( 𝑁𝑉𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) → 𝑣𝑉 )
16 eleq1w ( 𝑛 = 𝑣 → ( 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) ↔ 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) )
17 16 rspcv ( 𝑣𝑉 → ( ∀ 𝑛𝑉 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) )
18 15 17 syl ( ( 𝐺 ∈ USGraph ∧ ( 𝑁𝑉𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) → ( ∀ 𝑛𝑉 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) )
19 18 ex ( 𝐺 ∈ USGraph → ( ( 𝑁𝑉𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ∀ 𝑛𝑉 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) )
20 19 com23 ( 𝐺 ∈ USGraph → ( ∀ 𝑛𝑉 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) → ( ( 𝑁𝑉𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) )
21 13 20 sylbid ( 𝐺 ∈ USGraph → ( 𝐺 ∈ ComplGraph → ( ( 𝑁𝑉𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) )
22 21 imp ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) → ( ( 𝑁𝑉𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) )
23 22 impl ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ∧ 𝑁𝑉 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) )
24 1 2 3 4 uvtxupgrres ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁𝑉 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) → 𝑣 ∈ ( UnivVtx ‘ 𝑆 ) ) )
25 12 23 24 sylc ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ∧ 𝑁𝑉 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑣 ∈ ( UnivVtx ‘ 𝑆 ) )
26 25 ralrimiva ( ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ∧ 𝑁𝑉 ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑣 ∈ ( UnivVtx ‘ 𝑆 ) )
27 8 26 sylanb ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉 ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑣 ∈ ( UnivVtx ‘ 𝑆 ) )
28 opex ⟨ ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) ⟩ ∈ V
29 4 28 eqeltri 𝑆 ∈ V
30 1 2 3 4 upgrres1lem2 ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } )
31 30 eqcomi ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 )
32 31 iscplgr ( 𝑆 ∈ V → ( 𝑆 ∈ ComplGraph ↔ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑣 ∈ ( UnivVtx ‘ 𝑆 ) ) )
33 29 32 mp1i ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉 ) → ( 𝑆 ∈ ComplGraph ↔ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑣 ∈ ( UnivVtx ‘ 𝑆 ) ) )
34 27 33 mpbird ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉 ) → 𝑆 ∈ ComplGraph )
35 iscusgr ( 𝑆 ∈ ComplUSGraph ↔ ( 𝑆 ∈ USGraph ∧ 𝑆 ∈ ComplGraph ) )
36 7 34 35 sylanbrc ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉 ) → 𝑆 ∈ ComplUSGraph )