Step |
Hyp |
Ref |
Expression |
1 |
|
cusgrres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
cusgrres.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
cusgrres.f |
⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } |
4 |
|
cusgrres.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 |
5 |
|
cusgrusgr |
⊢ ( 𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph ) |
6 |
1 2 3 4
|
usgrres1 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ USGraph ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ USGraph ) |
8 |
|
iscusgr |
⊢ ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ) |
9 |
|
usgrupgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) |
10 |
9
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) → 𝐺 ∈ UPGraph ) |
11 |
10
|
anim1i |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ) |
12 |
11
|
anim1i |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) |
13 |
1
|
iscplgr |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑛 ∈ 𝑉 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
14 |
|
eldifi |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑣 ∈ 𝑉 ) |
15 |
14
|
ad2antll |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) → 𝑣 ∈ 𝑉 ) |
16 |
|
eleq1w |
⊢ ( 𝑛 = 𝑣 → ( 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) ↔ 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
17 |
16
|
rspcv |
⊢ ( 𝑣 ∈ 𝑉 → ( ∀ 𝑛 ∈ 𝑉 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
18 |
15 17
|
syl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) → ( ∀ 𝑛 ∈ 𝑉 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
19 |
18
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝑁 ∈ 𝑉 ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ∀ 𝑛 ∈ 𝑉 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) ) |
20 |
19
|
com23 |
⊢ ( 𝐺 ∈ USGraph → ( ∀ 𝑛 ∈ 𝑉 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) → ( ( 𝑁 ∈ 𝑉 ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) ) |
21 |
13 20
|
sylbid |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ ComplGraph → ( ( 𝑁 ∈ 𝑉 ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) ) |
22 |
21
|
imp |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) → ( ( 𝑁 ∈ 𝑉 ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
23 |
22
|
impl |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) |
24 |
1 2 3 4
|
uvtxupgrres |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) → 𝑣 ∈ ( UnivVtx ‘ 𝑆 ) ) ) |
25 |
12 23 24
|
sylc |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → 𝑣 ∈ ( UnivVtx ‘ 𝑆 ) ) |
26 |
25
|
ralrimiva |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑣 ∈ ( UnivVtx ‘ 𝑆 ) ) |
27 |
8 26
|
sylanb |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑣 ∈ ( UnivVtx ‘ 𝑆 ) ) |
28 |
|
opex |
⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 ∈ V |
29 |
4 28
|
eqeltri |
⊢ 𝑆 ∈ V |
30 |
1 2 3 4
|
upgrres1lem2 |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
31 |
30
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
32 |
31
|
iscplgr |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ ComplGraph ↔ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑣 ∈ ( UnivVtx ‘ 𝑆 ) ) ) |
33 |
29 32
|
mp1i |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 ∈ ComplGraph ↔ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) 𝑣 ∈ ( UnivVtx ‘ 𝑆 ) ) ) |
34 |
27 33
|
mpbird |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ ComplGraph ) |
35 |
|
iscusgr |
⊢ ( 𝑆 ∈ ComplUSGraph ↔ ( 𝑆 ∈ USGraph ∧ 𝑆 ∈ ComplGraph ) ) |
36 |
7 34 35
|
sylanbrc |
⊢ ( ( 𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ ComplUSGraph ) |