Description: The size of a finite complete simple graph with n vertices ( n e. NN0 ) is ( n _C 2 ) (" n choose 2") resp. ( ( ( n - 1 ) * n ) / 2 ) , see definition in section I.1 of Bollobas p. 3 . (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 10-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cusgrsizeindb0.v | |
|
cusgrsizeindb0.e | |
||
Assertion | cusgrsize | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrsizeindb0.v | |
|
2 | cusgrsizeindb0.e | |
|
3 | edgval | |
|
4 | 2 3 | eqtri | |
5 | 4 | a1i | |
6 | 5 | fveq2d | |
7 | 1 | opeq1i | |
8 | cusgrop | |
|
9 | 7 8 | eqeltrid | |
10 | fvex | |
|
11 | fvex | |
|
12 | rabexg | |
|
13 | 12 | resiexd | |
14 | 11 13 | ax-mp | |
15 | rneq | |
|
16 | 15 | fveq2d | |
17 | fveq2 | |
|
18 | 17 | oveq1d | |
19 | 16 18 | eqeqan12rd | |
20 | rneq | |
|
21 | 20 | fveq2d | |
22 | fveq2 | |
|
23 | 22 | oveq1d | |
24 | 21 23 | eqeqan12rd | |
25 | vex | |
|
26 | vex | |
|
27 | 25 26 | opvtxfvi | |
28 | 27 | eqcomi | |
29 | eqid | |
|
30 | eqid | |
|
31 | eqid | |
|
32 | 28 29 30 31 | cusgrres | |
33 | rneq | |
|
34 | 33 | fveq2d | |
35 | 34 | adantl | |
36 | fveq2 | |
|
37 | 36 | adantr | |
38 | 37 | oveq1d | |
39 | 35 38 | eqeq12d | |
40 | edgopval | |
|
41 | 40 | el2v | |
42 | 41 | a1i | |
43 | 42 | eqcomd | |
44 | 43 | fveq2d | |
45 | cusgrusgr | |
|
46 | usgruhgr | |
|
47 | 45 46 | syl | |
48 | 28 29 | cusgrsizeindb0 | |
49 | 47 48 | sylan | |
50 | 44 49 | eqtrd | |
51 | rnresi | |
|
52 | 51 | fveq2i | |
53 | 41 | a1i | |
54 | 53 | rabeqdv | |
55 | 54 | fveq2d | |
56 | 52 55 | eqtrid | |
57 | 56 | eqeq1d | |
58 | 57 | biimpd | |
59 | 58 | imdistani | |
60 | 41 | eqcomi | |
61 | eqid | |
|
62 | 28 60 61 | cusgrsize2inds | |
63 | 62 | imp31 | |
64 | 59 63 | syl | |
65 | 10 14 19 24 32 39 50 64 | opfi1ind | |
66 | 9 65 | sylan | |
67 | 6 66 | eqtrd | |