Metamath Proof Explorer


Theorem dalem45

Description: Lemma for dath . Dummy center of perspectivity c is not on the line G H . (Contributed by NM, 16-Aug-2012)

Ref Expression
Hypotheses dalem.ph
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
dalem.l
|- .<_ = ( le ` K )
dalem.j
|- .\/ = ( join ` K )
dalem.a
|- A = ( Atoms ` K )
dalem.ps
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )
dalem44.m
|- ./\ = ( meet ` K )
dalem44.o
|- O = ( LPlanes ` K )
dalem44.y
|- Y = ( ( P .\/ Q ) .\/ R )
dalem44.z
|- Z = ( ( S .\/ T ) .\/ U )
dalem44.g
|- G = ( ( c .\/ P ) ./\ ( d .\/ S ) )
dalem44.h
|- H = ( ( c .\/ Q ) ./\ ( d .\/ T ) )
dalem44.i
|- I = ( ( c .\/ R ) ./\ ( d .\/ U ) )
Assertion dalem45
|- ( ( ph /\ Y = Z /\ ps ) -> -. c .<_ ( G .\/ H ) )

Proof

Step Hyp Ref Expression
1 dalem.ph
 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
2 dalem.l
 |-  .<_ = ( le ` K )
3 dalem.j
 |-  .\/ = ( join ` K )
4 dalem.a
 |-  A = ( Atoms ` K )
5 dalem.ps
 |-  ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )
6 dalem44.m
 |-  ./\ = ( meet ` K )
7 dalem44.o
 |-  O = ( LPlanes ` K )
8 dalem44.y
 |-  Y = ( ( P .\/ Q ) .\/ R )
9 dalem44.z
 |-  Z = ( ( S .\/ T ) .\/ U )
10 dalem44.g
 |-  G = ( ( c .\/ P ) ./\ ( d .\/ S ) )
11 dalem44.h
 |-  H = ( ( c .\/ Q ) ./\ ( d .\/ T ) )
12 dalem44.i
 |-  I = ( ( c .\/ R ) ./\ ( d .\/ U ) )
13 1 dalemkelat
 |-  ( ph -> K e. Lat )
14 13 3ad2ant1
 |-  ( ( ph /\ Y = Z /\ ps ) -> K e. Lat )
15 5 4 dalemcceb
 |-  ( ps -> c e. ( Base ` K ) )
16 15 3ad2ant3
 |-  ( ( ph /\ Y = Z /\ ps ) -> c e. ( Base ` K ) )
17 1 dalemkehl
 |-  ( ph -> K e. HL )
18 17 3ad2ant1
 |-  ( ( ph /\ Y = Z /\ ps ) -> K e. HL )
19 1 2 3 4 5 6 7 8 9 10 dalem23
 |-  ( ( ph /\ Y = Z /\ ps ) -> G e. A )
20 1 2 3 4 5 6 7 8 9 11 dalem29
 |-  ( ( ph /\ Y = Z /\ ps ) -> H e. A )
21 eqid
 |-  ( Base ` K ) = ( Base ` K )
22 21 3 4 hlatjcl
 |-  ( ( K e. HL /\ G e. A /\ H e. A ) -> ( G .\/ H ) e. ( Base ` K ) )
23 18 19 20 22 syl3anc
 |-  ( ( ph /\ Y = Z /\ ps ) -> ( G .\/ H ) e. ( Base ` K ) )
24 1 2 3 4 5 6 7 8 9 12 dalem34
 |-  ( ( ph /\ Y = Z /\ ps ) -> I e. A )
25 21 4 atbase
 |-  ( I e. A -> I e. ( Base ` K ) )
26 24 25 syl
 |-  ( ( ph /\ Y = Z /\ ps ) -> I e. ( Base ` K ) )
27 1 2 3 4 5 6 7 8 9 10 11 12 dalem44
 |-  ( ( ph /\ Y = Z /\ ps ) -> -. c .<_ ( ( G .\/ H ) .\/ I ) )
28 21 2 3 latnlej2l
 |-  ( ( K e. Lat /\ ( c e. ( Base ` K ) /\ ( G .\/ H ) e. ( Base ` K ) /\ I e. ( Base ` K ) ) /\ -. c .<_ ( ( G .\/ H ) .\/ I ) ) -> -. c .<_ ( G .\/ H ) )
29 14 16 23 26 27 28 syl131anc
 |-  ( ( ph /\ Y = Z /\ ps ) -> -. c .<_ ( G .\/ H ) )