| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalem.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
| 2 |
|
dalem.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dalem.j |
|- .\/ = ( join ` K ) |
| 4 |
|
dalem.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dalem.ps |
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
| 6 |
|
dalem23.m |
|- ./\ = ( meet ` K ) |
| 7 |
|
dalem23.o |
|- O = ( LPlanes ` K ) |
| 8 |
|
dalem23.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
| 9 |
|
dalem23.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
| 10 |
|
dalem23.g |
|- G = ( ( c .\/ P ) ./\ ( d .\/ S ) ) |
| 11 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ ps ) -> K e. HL ) |
| 13 |
5
|
dalemccea |
|- ( ps -> c e. A ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ ps ) -> c e. A ) |
| 15 |
1
|
dalempea |
|- ( ph -> P e. A ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ ps ) -> P e. A ) |
| 17 |
5
|
dalemddea |
|- ( ps -> d e. A ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ ps ) -> d e. A ) |
| 19 |
1
|
dalemsea |
|- ( ph -> S e. A ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ ps ) -> S e. A ) |
| 21 |
3 4
|
hlatj4 |
|- ( ( K e. HL /\ ( c e. A /\ P e. A ) /\ ( d e. A /\ S e. A ) ) -> ( ( c .\/ P ) .\/ ( d .\/ S ) ) = ( ( c .\/ d ) .\/ ( P .\/ S ) ) ) |
| 22 |
12 14 16 18 20 21
|
syl122anc |
|- ( ( ph /\ ps ) -> ( ( c .\/ P ) .\/ ( d .\/ S ) ) = ( ( c .\/ d ) .\/ ( P .\/ S ) ) ) |
| 23 |
22
|
3adant2 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ P ) .\/ ( d .\/ S ) ) = ( ( c .\/ d ) .\/ ( P .\/ S ) ) ) |
| 24 |
1 2 3 4 5 7 8 9
|
dalem22 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ d ) .\/ ( P .\/ S ) ) e. O ) |
| 25 |
23 24
|
eqeltrd |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ P ) .\/ ( d .\/ S ) ) e. O ) |
| 26 |
11
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. HL ) |
| 27 |
1 2 3 4 7 8
|
dalemply |
|- ( ph -> P .<_ Y ) |
| 28 |
5
|
dalem-ccly |
|- ( ps -> -. c .<_ Y ) |
| 29 |
|
nbrne2 |
|- ( ( P .<_ Y /\ -. c .<_ Y ) -> P =/= c ) |
| 30 |
27 28 29
|
syl2an |
|- ( ( ph /\ ps ) -> P =/= c ) |
| 31 |
30
|
necomd |
|- ( ( ph /\ ps ) -> c =/= P ) |
| 32 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
| 33 |
3 4 32
|
llni2 |
|- ( ( ( K e. HL /\ c e. A /\ P e. A ) /\ c =/= P ) -> ( c .\/ P ) e. ( LLines ` K ) ) |
| 34 |
12 14 16 31 33
|
syl31anc |
|- ( ( ph /\ ps ) -> ( c .\/ P ) e. ( LLines ` K ) ) |
| 35 |
34
|
3adant2 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ P ) e. ( LLines ` K ) ) |
| 36 |
17
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> d e. A ) |
| 37 |
19
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> S e. A ) |
| 38 |
1 2 3 4 9
|
dalemsly |
|- ( ( ph /\ Y = Z ) -> S .<_ Y ) |
| 39 |
38
|
3adant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> S .<_ Y ) |
| 40 |
5
|
dalem-ddly |
|- ( ps -> -. d .<_ Y ) |
| 41 |
40
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> -. d .<_ Y ) |
| 42 |
|
nbrne2 |
|- ( ( S .<_ Y /\ -. d .<_ Y ) -> S =/= d ) |
| 43 |
39 41 42
|
syl2anc |
|- ( ( ph /\ Y = Z /\ ps ) -> S =/= d ) |
| 44 |
43
|
necomd |
|- ( ( ph /\ Y = Z /\ ps ) -> d =/= S ) |
| 45 |
3 4 32
|
llni2 |
|- ( ( ( K e. HL /\ d e. A /\ S e. A ) /\ d =/= S ) -> ( d .\/ S ) e. ( LLines ` K ) ) |
| 46 |
26 36 37 44 45
|
syl31anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( d .\/ S ) e. ( LLines ` K ) ) |
| 47 |
3 6 4 32 7
|
2llnmj |
|- ( ( K e. HL /\ ( c .\/ P ) e. ( LLines ` K ) /\ ( d .\/ S ) e. ( LLines ` K ) ) -> ( ( ( c .\/ P ) ./\ ( d .\/ S ) ) e. A <-> ( ( c .\/ P ) .\/ ( d .\/ S ) ) e. O ) ) |
| 48 |
26 35 46 47
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( c .\/ P ) ./\ ( d .\/ S ) ) e. A <-> ( ( c .\/ P ) .\/ ( d .\/ S ) ) e. O ) ) |
| 49 |
25 48
|
mpbird |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ P ) ./\ ( d .\/ S ) ) e. A ) |
| 50 |
10 49
|
eqeltrid |
|- ( ( ph /\ Y = Z /\ ps ) -> G e. A ) |