Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalem.l |
|- .<_ = ( le ` K ) |
3 |
|
dalem.j |
|- .\/ = ( join ` K ) |
4 |
|
dalem.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem.ps |
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
6 |
|
dalem23.m |
|- ./\ = ( meet ` K ) |
7 |
|
dalem23.o |
|- O = ( LPlanes ` K ) |
8 |
|
dalem23.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
9 |
|
dalem23.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
10 |
|
dalem23.g |
|- G = ( ( c .\/ P ) ./\ ( d .\/ S ) ) |
11 |
10
|
oveq1i |
|- ( G ./\ Y ) = ( ( ( c .\/ P ) ./\ ( d .\/ S ) ) ./\ Y ) |
12 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
13 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
14 |
12 13
|
syl |
|- ( ph -> K e. OL ) |
15 |
14
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. OL ) |
16 |
12
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. HL ) |
17 |
5
|
dalemccea |
|- ( ps -> c e. A ) |
18 |
17
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> c e. A ) |
19 |
1
|
dalempea |
|- ( ph -> P e. A ) |
20 |
19
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> P e. A ) |
21 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
22 |
21 3 4
|
hlatjcl |
|- ( ( K e. HL /\ c e. A /\ P e. A ) -> ( c .\/ P ) e. ( Base ` K ) ) |
23 |
16 18 20 22
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ P ) e. ( Base ` K ) ) |
24 |
5
|
dalemddea |
|- ( ps -> d e. A ) |
25 |
24
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> d e. A ) |
26 |
1
|
dalemsea |
|- ( ph -> S e. A ) |
27 |
26
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> S e. A ) |
28 |
21 3 4
|
hlatjcl |
|- ( ( K e. HL /\ d e. A /\ S e. A ) -> ( d .\/ S ) e. ( Base ` K ) ) |
29 |
16 25 27 28
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( d .\/ S ) e. ( Base ` K ) ) |
30 |
1 7
|
dalemyeb |
|- ( ph -> Y e. ( Base ` K ) ) |
31 |
30
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> Y e. ( Base ` K ) ) |
32 |
21 6
|
latmmdir |
|- ( ( K e. OL /\ ( ( c .\/ P ) e. ( Base ` K ) /\ ( d .\/ S ) e. ( Base ` K ) /\ Y e. ( Base ` K ) ) ) -> ( ( ( c .\/ P ) ./\ ( d .\/ S ) ) ./\ Y ) = ( ( ( c .\/ P ) ./\ Y ) ./\ ( ( d .\/ S ) ./\ Y ) ) ) |
33 |
15 23 29 31 32
|
syl13anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( c .\/ P ) ./\ ( d .\/ S ) ) ./\ Y ) = ( ( ( c .\/ P ) ./\ Y ) ./\ ( ( d .\/ S ) ./\ Y ) ) ) |
34 |
11 33
|
eqtrid |
|- ( ( ph /\ Y = Z /\ ps ) -> ( G ./\ Y ) = ( ( ( c .\/ P ) ./\ Y ) ./\ ( ( d .\/ S ) ./\ Y ) ) ) |
35 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ c e. A /\ P e. A ) -> ( c .\/ P ) = ( P .\/ c ) ) |
36 |
16 18 20 35
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ P ) = ( P .\/ c ) ) |
37 |
36
|
oveq1d |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ P ) ./\ Y ) = ( ( P .\/ c ) ./\ Y ) ) |
38 |
1 2 3 4 7 8
|
dalemply |
|- ( ph -> P .<_ Y ) |
39 |
38
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> P .<_ Y ) |
40 |
5
|
dalem-ccly |
|- ( ps -> -. c .<_ Y ) |
41 |
40
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> -. c .<_ Y ) |
42 |
21 2 3 6 4
|
2atjm |
|- ( ( K e. HL /\ ( P e. A /\ c e. A /\ Y e. ( Base ` K ) ) /\ ( P .<_ Y /\ -. c .<_ Y ) ) -> ( ( P .\/ c ) ./\ Y ) = P ) |
43 |
16 20 18 31 39 41 42
|
syl132anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( P .\/ c ) ./\ Y ) = P ) |
44 |
37 43
|
eqtrd |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ P ) ./\ Y ) = P ) |
45 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ d e. A /\ S e. A ) -> ( d .\/ S ) = ( S .\/ d ) ) |
46 |
16 25 27 45
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( d .\/ S ) = ( S .\/ d ) ) |
47 |
46
|
oveq1d |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( d .\/ S ) ./\ Y ) = ( ( S .\/ d ) ./\ Y ) ) |
48 |
1 2 3 4 9
|
dalemsly |
|- ( ( ph /\ Y = Z ) -> S .<_ Y ) |
49 |
48
|
3adant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> S .<_ Y ) |
50 |
5
|
dalem-ddly |
|- ( ps -> -. d .<_ Y ) |
51 |
50
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> -. d .<_ Y ) |
52 |
21 2 3 6 4
|
2atjm |
|- ( ( K e. HL /\ ( S e. A /\ d e. A /\ Y e. ( Base ` K ) ) /\ ( S .<_ Y /\ -. d .<_ Y ) ) -> ( ( S .\/ d ) ./\ Y ) = S ) |
53 |
16 27 25 31 49 51 52
|
syl132anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( S .\/ d ) ./\ Y ) = S ) |
54 |
47 53
|
eqtrd |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( d .\/ S ) ./\ Y ) = S ) |
55 |
44 54
|
oveq12d |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( c .\/ P ) ./\ Y ) ./\ ( ( d .\/ S ) ./\ Y ) ) = ( P ./\ S ) ) |
56 |
1 2 3 4 7 8
|
dalempnes |
|- ( ph -> P =/= S ) |
57 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
58 |
12 57
|
syl |
|- ( ph -> K e. AtLat ) |
59 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
60 |
6 59 4
|
atnem0 |
|- ( ( K e. AtLat /\ P e. A /\ S e. A ) -> ( P =/= S <-> ( P ./\ S ) = ( 0. ` K ) ) ) |
61 |
58 19 26 60
|
syl3anc |
|- ( ph -> ( P =/= S <-> ( P ./\ S ) = ( 0. ` K ) ) ) |
62 |
56 61
|
mpbid |
|- ( ph -> ( P ./\ S ) = ( 0. ` K ) ) |
63 |
62
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( P ./\ S ) = ( 0. ` K ) ) |
64 |
34 55 63
|
3eqtrd |
|- ( ( ph /\ Y = Z /\ ps ) -> ( G ./\ Y ) = ( 0. ` K ) ) |
65 |
58
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. AtLat ) |
66 |
1 2 3 4 5 6 7 8 9 10
|
dalem23 |
|- ( ( ph /\ Y = Z /\ ps ) -> G e. A ) |
67 |
21 2 6 59 4
|
atnle |
|- ( ( K e. AtLat /\ G e. A /\ Y e. ( Base ` K ) ) -> ( -. G .<_ Y <-> ( G ./\ Y ) = ( 0. ` K ) ) ) |
68 |
65 66 31 67
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( -. G .<_ Y <-> ( G ./\ Y ) = ( 0. ` K ) ) ) |
69 |
64 68
|
mpbird |
|- ( ( ph /\ Y = Z /\ ps ) -> -. G .<_ Y ) |