Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
dalempnes.o |
|- O = ( LPlanes ` K ) |
6 |
|
dalempnes.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
7 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
8 |
1 4
|
dalempeb |
|- ( ph -> P e. ( Base ` K ) ) |
9 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
10 |
1
|
dalemqea |
|- ( ph -> Q e. A ) |
11 |
1
|
dalemrea |
|- ( ph -> R e. A ) |
12 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
13 |
12 3 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
14 |
9 10 11 13
|
syl3anc |
|- ( ph -> ( Q .\/ R ) e. ( Base ` K ) ) |
15 |
12 2 3
|
latlej1 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) -> P .<_ ( P .\/ ( Q .\/ R ) ) ) |
16 |
7 8 14 15
|
syl3anc |
|- ( ph -> P .<_ ( P .\/ ( Q .\/ R ) ) ) |
17 |
1
|
dalempea |
|- ( ph -> P e. A ) |
18 |
3 4
|
hlatjass |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P .\/ Q ) .\/ R ) = ( P .\/ ( Q .\/ R ) ) ) |
19 |
9 17 10 11 18
|
syl13anc |
|- ( ph -> ( ( P .\/ Q ) .\/ R ) = ( P .\/ ( Q .\/ R ) ) ) |
20 |
16 19
|
breqtrrd |
|- ( ph -> P .<_ ( ( P .\/ Q ) .\/ R ) ) |
21 |
20 6
|
breqtrrdi |
|- ( ph -> P .<_ Y ) |