| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalem.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
| 2 |
|
dalem.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dalem.j |
|- .\/ = ( join ` K ) |
| 4 |
|
dalem.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dalem.ps |
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
| 6 |
|
dalem44.m |
|- ./\ = ( meet ` K ) |
| 7 |
|
dalem44.o |
|- O = ( LPlanes ` K ) |
| 8 |
|
dalem44.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
| 9 |
|
dalem44.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
| 10 |
|
dalem44.g |
|- G = ( ( c .\/ P ) ./\ ( d .\/ S ) ) |
| 11 |
|
dalem44.h |
|- H = ( ( c .\/ Q ) ./\ ( d .\/ T ) ) |
| 12 |
|
dalem44.i |
|- I = ( ( c .\/ R ) ./\ ( d .\/ U ) ) |
| 13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem43 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .\/ I ) =/= Y ) |
| 14 |
13
|
necomd |
|- ( ( ph /\ Y = Z /\ ps ) -> Y =/= ( ( G .\/ H ) .\/ I ) ) |
| 15 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. Lat ) |
| 17 |
5 4
|
dalemcceb |
|- ( ps -> c e. ( Base ` K ) ) |
| 18 |
17
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> c e. ( Base ` K ) ) |
| 19 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem42 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .\/ I ) e. O ) |
| 20 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 21 |
20 7
|
lplnbase |
|- ( ( ( G .\/ H ) .\/ I ) e. O -> ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) ) |
| 22 |
19 21
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) ) |
| 23 |
20 2 3
|
latleeqj1 |
|- ( ( K e. Lat /\ c e. ( Base ` K ) /\ ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) ) -> ( c .<_ ( ( G .\/ H ) .\/ I ) <-> ( c .\/ ( ( G .\/ H ) .\/ I ) ) = ( ( G .\/ H ) .\/ I ) ) ) |
| 24 |
16 18 22 23
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .<_ ( ( G .\/ H ) .\/ I ) <-> ( c .\/ ( ( G .\/ H ) .\/ I ) ) = ( ( G .\/ H ) .\/ I ) ) ) |
| 25 |
1 2 3 4 5 6 7 8 9 10
|
dalem28 |
|- ( ( ph /\ Y = Z /\ ps ) -> P .<_ ( G .\/ c ) ) |
| 26 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
| 27 |
26
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. HL ) |
| 28 |
5
|
dalemccea |
|- ( ps -> c e. A ) |
| 29 |
28
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> c e. A ) |
| 30 |
1 2 3 4 5 6 7 8 9 10
|
dalem23 |
|- ( ( ph /\ Y = Z /\ ps ) -> G e. A ) |
| 31 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ c e. A /\ G e. A ) -> ( c .\/ G ) = ( G .\/ c ) ) |
| 32 |
27 29 30 31
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ G ) = ( G .\/ c ) ) |
| 33 |
25 32
|
breqtrrd |
|- ( ( ph /\ Y = Z /\ ps ) -> P .<_ ( c .\/ G ) ) |
| 34 |
1 2 3 4 5 6 7 8 9 11
|
dalem33 |
|- ( ( ph /\ Y = Z /\ ps ) -> Q .<_ ( H .\/ c ) ) |
| 35 |
1 2 3 4 5 6 7 8 9 11
|
dalem29 |
|- ( ( ph /\ Y = Z /\ ps ) -> H e. A ) |
| 36 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ c e. A /\ H e. A ) -> ( c .\/ H ) = ( H .\/ c ) ) |
| 37 |
27 29 35 36
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ H ) = ( H .\/ c ) ) |
| 38 |
34 37
|
breqtrrd |
|- ( ( ph /\ Y = Z /\ ps ) -> Q .<_ ( c .\/ H ) ) |
| 39 |
1 4
|
dalempeb |
|- ( ph -> P e. ( Base ` K ) ) |
| 40 |
39
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> P e. ( Base ` K ) ) |
| 41 |
20 3 4
|
hlatjcl |
|- ( ( K e. HL /\ c e. A /\ G e. A ) -> ( c .\/ G ) e. ( Base ` K ) ) |
| 42 |
27 29 30 41
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ G ) e. ( Base ` K ) ) |
| 43 |
1 4
|
dalemqeb |
|- ( ph -> Q e. ( Base ` K ) ) |
| 44 |
43
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> Q e. ( Base ` K ) ) |
| 45 |
20 3 4
|
hlatjcl |
|- ( ( K e. HL /\ c e. A /\ H e. A ) -> ( c .\/ H ) e. ( Base ` K ) ) |
| 46 |
27 29 35 45
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ H ) e. ( Base ` K ) ) |
| 47 |
20 2 3
|
latjlej12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ ( c .\/ G ) e. ( Base ` K ) ) /\ ( Q e. ( Base ` K ) /\ ( c .\/ H ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( c .\/ G ) /\ Q .<_ ( c .\/ H ) ) -> ( P .\/ Q ) .<_ ( ( c .\/ G ) .\/ ( c .\/ H ) ) ) ) |
| 48 |
16 40 42 44 46 47
|
syl122anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( P .<_ ( c .\/ G ) /\ Q .<_ ( c .\/ H ) ) -> ( P .\/ Q ) .<_ ( ( c .\/ G ) .\/ ( c .\/ H ) ) ) ) |
| 49 |
33 38 48
|
mp2and |
|- ( ( ph /\ Y = Z /\ ps ) -> ( P .\/ Q ) .<_ ( ( c .\/ G ) .\/ ( c .\/ H ) ) ) |
| 50 |
20 4
|
atbase |
|- ( G e. A -> G e. ( Base ` K ) ) |
| 51 |
30 50
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> G e. ( Base ` K ) ) |
| 52 |
20 4
|
atbase |
|- ( H e. A -> H e. ( Base ` K ) ) |
| 53 |
35 52
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> H e. ( Base ` K ) ) |
| 54 |
20 3
|
latjjdi |
|- ( ( K e. Lat /\ ( c e. ( Base ` K ) /\ G e. ( Base ` K ) /\ H e. ( Base ` K ) ) ) -> ( c .\/ ( G .\/ H ) ) = ( ( c .\/ G ) .\/ ( c .\/ H ) ) ) |
| 55 |
16 18 51 53 54
|
syl13anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ ( G .\/ H ) ) = ( ( c .\/ G ) .\/ ( c .\/ H ) ) ) |
| 56 |
49 55
|
breqtrrd |
|- ( ( ph /\ Y = Z /\ ps ) -> ( P .\/ Q ) .<_ ( c .\/ ( G .\/ H ) ) ) |
| 57 |
1 2 3 4 5 6 7 8 9 12
|
dalem37 |
|- ( ( ph /\ Y = Z /\ ps ) -> R .<_ ( I .\/ c ) ) |
| 58 |
1 2 3 4 5 6 7 8 9 12
|
dalem34 |
|- ( ( ph /\ Y = Z /\ ps ) -> I e. A ) |
| 59 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ c e. A /\ I e. A ) -> ( c .\/ I ) = ( I .\/ c ) ) |
| 60 |
27 29 58 59
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ I ) = ( I .\/ c ) ) |
| 61 |
57 60
|
breqtrrd |
|- ( ( ph /\ Y = Z /\ ps ) -> R .<_ ( c .\/ I ) ) |
| 62 |
1 3 4
|
dalempjqeb |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 63 |
62
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 64 |
20 3 4
|
hlatjcl |
|- ( ( K e. HL /\ G e. A /\ H e. A ) -> ( G .\/ H ) e. ( Base ` K ) ) |
| 65 |
27 30 35 64
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( G .\/ H ) e. ( Base ` K ) ) |
| 66 |
20 3
|
latjcl |
|- ( ( K e. Lat /\ c e. ( Base ` K ) /\ ( G .\/ H ) e. ( Base ` K ) ) -> ( c .\/ ( G .\/ H ) ) e. ( Base ` K ) ) |
| 67 |
16 18 65 66
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ ( G .\/ H ) ) e. ( Base ` K ) ) |
| 68 |
1 4
|
dalemreb |
|- ( ph -> R e. ( Base ` K ) ) |
| 69 |
68
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> R e. ( Base ` K ) ) |
| 70 |
20 3 4
|
hlatjcl |
|- ( ( K e. HL /\ c e. A /\ I e. A ) -> ( c .\/ I ) e. ( Base ` K ) ) |
| 71 |
27 29 58 70
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ I ) e. ( Base ` K ) ) |
| 72 |
20 2 3
|
latjlej12 |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( c .\/ ( G .\/ H ) ) e. ( Base ` K ) ) /\ ( R e. ( Base ` K ) /\ ( c .\/ I ) e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .<_ ( c .\/ ( G .\/ H ) ) /\ R .<_ ( c .\/ I ) ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( c .\/ ( G .\/ H ) ) .\/ ( c .\/ I ) ) ) ) |
| 73 |
16 63 67 69 71 72
|
syl122anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( P .\/ Q ) .<_ ( c .\/ ( G .\/ H ) ) /\ R .<_ ( c .\/ I ) ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( c .\/ ( G .\/ H ) ) .\/ ( c .\/ I ) ) ) ) |
| 74 |
56 61 73
|
mp2and |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( ( c .\/ ( G .\/ H ) ) .\/ ( c .\/ I ) ) ) |
| 75 |
20 4
|
atbase |
|- ( I e. A -> I e. ( Base ` K ) ) |
| 76 |
58 75
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> I e. ( Base ` K ) ) |
| 77 |
20 3
|
latjjdi |
|- ( ( K e. Lat /\ ( c e. ( Base ` K ) /\ ( G .\/ H ) e. ( Base ` K ) /\ I e. ( Base ` K ) ) ) -> ( c .\/ ( ( G .\/ H ) .\/ I ) ) = ( ( c .\/ ( G .\/ H ) ) .\/ ( c .\/ I ) ) ) |
| 78 |
16 18 65 76 77
|
syl13anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ ( ( G .\/ H ) .\/ I ) ) = ( ( c .\/ ( G .\/ H ) ) .\/ ( c .\/ I ) ) ) |
| 79 |
74 78
|
breqtrrd |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( P .\/ Q ) .\/ R ) .<_ ( c .\/ ( ( G .\/ H ) .\/ I ) ) ) |
| 80 |
8 79
|
eqbrtrid |
|- ( ( ph /\ Y = Z /\ ps ) -> Y .<_ ( c .\/ ( ( G .\/ H ) .\/ I ) ) ) |
| 81 |
|
breq2 |
|- ( ( c .\/ ( ( G .\/ H ) .\/ I ) ) = ( ( G .\/ H ) .\/ I ) -> ( Y .<_ ( c .\/ ( ( G .\/ H ) .\/ I ) ) <-> Y .<_ ( ( G .\/ H ) .\/ I ) ) ) |
| 82 |
80 81
|
syl5ibcom |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ ( ( G .\/ H ) .\/ I ) ) = ( ( G .\/ H ) .\/ I ) -> Y .<_ ( ( G .\/ H ) .\/ I ) ) ) |
| 83 |
24 82
|
sylbid |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .<_ ( ( G .\/ H ) .\/ I ) -> Y .<_ ( ( G .\/ H ) .\/ I ) ) ) |
| 84 |
1
|
dalemyeo |
|- ( ph -> Y e. O ) |
| 85 |
84
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> Y e. O ) |
| 86 |
2 7
|
lplncmp |
|- ( ( K e. HL /\ Y e. O /\ ( ( G .\/ H ) .\/ I ) e. O ) -> ( Y .<_ ( ( G .\/ H ) .\/ I ) <-> Y = ( ( G .\/ H ) .\/ I ) ) ) |
| 87 |
27 85 19 86
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( Y .<_ ( ( G .\/ H ) .\/ I ) <-> Y = ( ( G .\/ H ) .\/ I ) ) ) |
| 88 |
83 87
|
sylibd |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .<_ ( ( G .\/ H ) .\/ I ) -> Y = ( ( G .\/ H ) .\/ I ) ) ) |
| 89 |
88
|
necon3ad |
|- ( ( ph /\ Y = Z /\ ps ) -> ( Y =/= ( ( G .\/ H ) .\/ I ) -> -. c .<_ ( ( G .\/ H ) .\/ I ) ) ) |
| 90 |
14 89
|
mpd |
|- ( ( ph /\ Y = Z /\ ps ) -> -. c .<_ ( ( G .\/ H ) .\/ I ) ) |