Metamath Proof Explorer


Theorem dalem44

Description: Lemma for dath . Dummy center of perspectivity c lies outside of plane G H I . (Contributed by NM, 16-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem44.m ˙=meetK
dalem44.o O=LPlanesK
dalem44.y Y=P˙Q˙R
dalem44.z Z=S˙T˙U
dalem44.g G=c˙P˙d˙S
dalem44.h H=c˙Q˙d˙T
dalem44.i I=c˙R˙d˙U
Assertion dalem44 φY=Zψ¬c˙G˙H˙I

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem44.m ˙=meetK
7 dalem44.o O=LPlanesK
8 dalem44.y Y=P˙Q˙R
9 dalem44.z Z=S˙T˙U
10 dalem44.g G=c˙P˙d˙S
11 dalem44.h H=c˙Q˙d˙T
12 dalem44.i I=c˙R˙d˙U
13 1 2 3 4 5 6 7 8 9 10 11 12 dalem43 φY=ZψG˙H˙IY
14 13 necomd φY=ZψYG˙H˙I
15 1 dalemkelat φKLat
16 15 3ad2ant1 φY=ZψKLat
17 5 4 dalemcceb ψcBaseK
18 17 3ad2ant3 φY=ZψcBaseK
19 1 2 3 4 5 6 7 8 9 10 11 12 dalem42 φY=ZψG˙H˙IO
20 eqid BaseK=BaseK
21 20 7 lplnbase G˙H˙IOG˙H˙IBaseK
22 19 21 syl φY=ZψG˙H˙IBaseK
23 20 2 3 latleeqj1 KLatcBaseKG˙H˙IBaseKc˙G˙H˙Ic˙G˙H˙I=G˙H˙I
24 16 18 22 23 syl3anc φY=Zψc˙G˙H˙Ic˙G˙H˙I=G˙H˙I
25 1 2 3 4 5 6 7 8 9 10 dalem28 φY=ZψP˙G˙c
26 1 dalemkehl φKHL
27 26 3ad2ant1 φY=ZψKHL
28 5 dalemccea ψcA
29 28 3ad2ant3 φY=ZψcA
30 1 2 3 4 5 6 7 8 9 10 dalem23 φY=ZψGA
31 3 4 hlatjcom KHLcAGAc˙G=G˙c
32 27 29 30 31 syl3anc φY=Zψc˙G=G˙c
33 25 32 breqtrrd φY=ZψP˙c˙G
34 1 2 3 4 5 6 7 8 9 11 dalem33 φY=ZψQ˙H˙c
35 1 2 3 4 5 6 7 8 9 11 dalem29 φY=ZψHA
36 3 4 hlatjcom KHLcAHAc˙H=H˙c
37 27 29 35 36 syl3anc φY=Zψc˙H=H˙c
38 34 37 breqtrrd φY=ZψQ˙c˙H
39 1 4 dalempeb φPBaseK
40 39 3ad2ant1 φY=ZψPBaseK
41 20 3 4 hlatjcl KHLcAGAc˙GBaseK
42 27 29 30 41 syl3anc φY=Zψc˙GBaseK
43 1 4 dalemqeb φQBaseK
44 43 3ad2ant1 φY=ZψQBaseK
45 20 3 4 hlatjcl KHLcAHAc˙HBaseK
46 27 29 35 45 syl3anc φY=Zψc˙HBaseK
47 20 2 3 latjlej12 KLatPBaseKc˙GBaseKQBaseKc˙HBaseKP˙c˙GQ˙c˙HP˙Q˙c˙G˙c˙H
48 16 40 42 44 46 47 syl122anc φY=ZψP˙c˙GQ˙c˙HP˙Q˙c˙G˙c˙H
49 33 38 48 mp2and φY=ZψP˙Q˙c˙G˙c˙H
50 20 4 atbase GAGBaseK
51 30 50 syl φY=ZψGBaseK
52 20 4 atbase HAHBaseK
53 35 52 syl φY=ZψHBaseK
54 20 3 latjjdi KLatcBaseKGBaseKHBaseKc˙G˙H=c˙G˙c˙H
55 16 18 51 53 54 syl13anc φY=Zψc˙G˙H=c˙G˙c˙H
56 49 55 breqtrrd φY=ZψP˙Q˙c˙G˙H
57 1 2 3 4 5 6 7 8 9 12 dalem37 φY=ZψR˙I˙c
58 1 2 3 4 5 6 7 8 9 12 dalem34 φY=ZψIA
59 3 4 hlatjcom KHLcAIAc˙I=I˙c
60 27 29 58 59 syl3anc φY=Zψc˙I=I˙c
61 57 60 breqtrrd φY=ZψR˙c˙I
62 1 3 4 dalempjqeb φP˙QBaseK
63 62 3ad2ant1 φY=ZψP˙QBaseK
64 20 3 4 hlatjcl KHLGAHAG˙HBaseK
65 27 30 35 64 syl3anc φY=ZψG˙HBaseK
66 20 3 latjcl KLatcBaseKG˙HBaseKc˙G˙HBaseK
67 16 18 65 66 syl3anc φY=Zψc˙G˙HBaseK
68 1 4 dalemreb φRBaseK
69 68 3ad2ant1 φY=ZψRBaseK
70 20 3 4 hlatjcl KHLcAIAc˙IBaseK
71 27 29 58 70 syl3anc φY=Zψc˙IBaseK
72 20 2 3 latjlej12 KLatP˙QBaseKc˙G˙HBaseKRBaseKc˙IBaseKP˙Q˙c˙G˙HR˙c˙IP˙Q˙R˙c˙G˙H˙c˙I
73 16 63 67 69 71 72 syl122anc φY=ZψP˙Q˙c˙G˙HR˙c˙IP˙Q˙R˙c˙G˙H˙c˙I
74 56 61 73 mp2and φY=ZψP˙Q˙R˙c˙G˙H˙c˙I
75 20 4 atbase IAIBaseK
76 58 75 syl φY=ZψIBaseK
77 20 3 latjjdi KLatcBaseKG˙HBaseKIBaseKc˙G˙H˙I=c˙G˙H˙c˙I
78 16 18 65 76 77 syl13anc φY=Zψc˙G˙H˙I=c˙G˙H˙c˙I
79 74 78 breqtrrd φY=ZψP˙Q˙R˙c˙G˙H˙I
80 8 79 eqbrtrid φY=ZψY˙c˙G˙H˙I
81 breq2 c˙G˙H˙I=G˙H˙IY˙c˙G˙H˙IY˙G˙H˙I
82 80 81 syl5ibcom φY=Zψc˙G˙H˙I=G˙H˙IY˙G˙H˙I
83 24 82 sylbid φY=Zψc˙G˙H˙IY˙G˙H˙I
84 1 dalemyeo φYO
85 84 3ad2ant1 φY=ZψYO
86 2 7 lplncmp KHLYOG˙H˙IOY˙G˙H˙IY=G˙H˙I
87 27 85 19 86 syl3anc φY=ZψY˙G˙H˙IY=G˙H˙I
88 83 87 sylibd φY=Zψc˙G˙H˙IY=G˙H˙I
89 88 necon3ad φY=ZψYG˙H˙I¬c˙G˙H˙I
90 14 89 mpd φY=Zψ¬c˙G˙H˙I