Metamath Proof Explorer


Theorem dalemqnet

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012)

Ref Expression
Hypotheses dalema.ph
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
dalemc.l
|- .<_ = ( le ` K )
dalemc.j
|- .\/ = ( join ` K )
dalemc.a
|- A = ( Atoms ` K )
dalempnes.o
|- O = ( LPlanes ` K )
dalempnes.y
|- Y = ( ( P .\/ Q ) .\/ R )
Assertion dalemqnet
|- ( ph -> Q =/= T )

Proof

Step Hyp Ref Expression
1 dalema.ph
 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
2 dalemc.l
 |-  .<_ = ( le ` K )
3 dalemc.j
 |-  .\/ = ( join ` K )
4 dalemc.a
 |-  A = ( Atoms ` K )
5 dalempnes.o
 |-  O = ( LPlanes ` K )
6 dalempnes.y
 |-  Y = ( ( P .\/ Q ) .\/ R )
7 1 dalemkelat
 |-  ( ph -> K e. Lat )
8 1 4 dalemceb
 |-  ( ph -> C e. ( Base ` K ) )
9 1 4 dalemteb
 |-  ( ph -> T e. ( Base ` K ) )
10 1 4 dalemueb
 |-  ( ph -> U e. ( Base ` K ) )
11 simp322
 |-  ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> -. C .<_ ( T .\/ U ) )
12 1 11 sylbi
 |-  ( ph -> -. C .<_ ( T .\/ U ) )
13 eqid
 |-  ( Base ` K ) = ( Base ` K )
14 13 2 3 latnlej2l
 |-  ( ( K e. Lat /\ ( C e. ( Base ` K ) /\ T e. ( Base ` K ) /\ U e. ( Base ` K ) ) /\ -. C .<_ ( T .\/ U ) ) -> -. C .<_ T )
15 7 8 9 10 12 14 syl131anc
 |-  ( ph -> -. C .<_ T )
16 1 dalemclqjt
 |-  ( ph -> C .<_ ( Q .\/ T ) )
17 oveq1
 |-  ( Q = T -> ( Q .\/ T ) = ( T .\/ T ) )
18 17 breq2d
 |-  ( Q = T -> ( C .<_ ( Q .\/ T ) <-> C .<_ ( T .\/ T ) ) )
19 16 18 syl5ibcom
 |-  ( ph -> ( Q = T -> C .<_ ( T .\/ T ) ) )
20 1 dalemkehl
 |-  ( ph -> K e. HL )
21 1 dalemtea
 |-  ( ph -> T e. A )
22 3 4 hlatjidm
 |-  ( ( K e. HL /\ T e. A ) -> ( T .\/ T ) = T )
23 20 21 22 syl2anc
 |-  ( ph -> ( T .\/ T ) = T )
24 23 breq2d
 |-  ( ph -> ( C .<_ ( T .\/ T ) <-> C .<_ T ) )
25 19 24 sylibd
 |-  ( ph -> ( Q = T -> C .<_ T ) )
26 25 necon3bd
 |-  ( ph -> ( -. C .<_ T -> Q =/= T ) )
27 15 26 mpd
 |-  ( ph -> Q =/= T )