Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> A e. CC ) |
2 |
|
simprl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> B e. CC ) |
3 |
|
simprr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> B =/= 0 ) |
4 |
|
divcan1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) x. B ) = A ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) x. B ) = A ) |
6 |
|
divcl |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
7 |
1 2 3 6
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) e. CC ) |
8 |
|
divne0 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) =/= 0 ) |
9 |
|
divmul |
|- ( ( A e. CC /\ B e. CC /\ ( ( A / B ) e. CC /\ ( A / B ) =/= 0 ) ) -> ( ( A / ( A / B ) ) = B <-> ( ( A / B ) x. B ) = A ) ) |
10 |
1 2 7 8 9
|
syl112anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / ( A / B ) ) = B <-> ( ( A / B ) x. B ) = A ) ) |
11 |
5 10
|
mpbird |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / ( A / B ) ) = B ) |