| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reex |  |-  RR e. _V | 
						
							| 2 | 1 | ssex |  |-  ( A C_ RR -> A e. _V ) | 
						
							| 3 |  | elpwg |  |-  ( A e. _V -> ( A e. ~P RR <-> A C_ RR ) ) | 
						
							| 4 | 3 | biimpar |  |-  ( ( A e. _V /\ A C_ RR ) -> A e. ~P RR ) | 
						
							| 5 | 2 4 | mpancom |  |-  ( A C_ RR -> A e. ~P RR ) | 
						
							| 6 |  | eleq2 |  |-  ( a = A -> ( 0 e. a <-> 0 e. A ) ) | 
						
							| 7 | 6 | ifbid |  |-  ( a = A -> if ( 0 e. a , 1 , 0 ) = if ( 0 e. A , 1 , 0 ) ) | 
						
							| 8 |  | df-dde |  |-  Ddelta = ( a e. ~P RR |-> if ( 0 e. a , 1 , 0 ) ) | 
						
							| 9 |  | 1ex |  |-  1 e. _V | 
						
							| 10 |  | c0ex |  |-  0 e. _V | 
						
							| 11 | 9 10 | ifex |  |-  if ( 0 e. A , 1 , 0 ) e. _V | 
						
							| 12 | 7 8 11 | fvmpt |  |-  ( A e. ~P RR -> ( Ddelta ` A ) = if ( 0 e. A , 1 , 0 ) ) | 
						
							| 13 | 5 12 | syl |  |-  ( A C_ RR -> ( Ddelta ` A ) = if ( 0 e. A , 1 , 0 ) ) | 
						
							| 14 |  | iffalse |  |-  ( -. 0 e. A -> if ( 0 e. A , 1 , 0 ) = 0 ) | 
						
							| 15 | 13 14 | sylan9eq |  |-  ( ( A C_ RR /\ -. 0 e. A ) -> ( Ddelta ` A ) = 0 ) |