Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
|- RR e. _V |
2 |
1
|
ssex |
|- ( A C_ RR -> A e. _V ) |
3 |
|
elpwg |
|- ( A e. _V -> ( A e. ~P RR <-> A C_ RR ) ) |
4 |
3
|
biimpar |
|- ( ( A e. _V /\ A C_ RR ) -> A e. ~P RR ) |
5 |
2 4
|
mpancom |
|- ( A C_ RR -> A e. ~P RR ) |
6 |
|
eleq2 |
|- ( a = A -> ( 0 e. a <-> 0 e. A ) ) |
7 |
6
|
ifbid |
|- ( a = A -> if ( 0 e. a , 1 , 0 ) = if ( 0 e. A , 1 , 0 ) ) |
8 |
|
df-dde |
|- Ddelta = ( a e. ~P RR |-> if ( 0 e. a , 1 , 0 ) ) |
9 |
|
1ex |
|- 1 e. _V |
10 |
|
c0ex |
|- 0 e. _V |
11 |
9 10
|
ifex |
|- if ( 0 e. A , 1 , 0 ) e. _V |
12 |
7 8 11
|
fvmpt |
|- ( A e. ~P RR -> ( Ddelta ` A ) = if ( 0 e. A , 1 , 0 ) ) |
13 |
5 12
|
syl |
|- ( A C_ RR -> ( Ddelta ` A ) = if ( 0 e. A , 1 , 0 ) ) |
14 |
|
iffalse |
|- ( -. 0 e. A -> if ( 0 e. A , 1 , 0 ) = 0 ) |
15 |
13 14
|
sylan9eq |
|- ( ( A C_ RR /\ -. 0 e. A ) -> ( Ddelta ` A ) = 0 ) |