| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1mul3.d |
|- D = ( deg1 ` R ) |
| 2 |
|
deg1mul3.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
deg1mul3.e |
|- E = ( RLReg ` R ) |
| 4 |
|
deg1mul3.b |
|- B = ( Base ` P ) |
| 5 |
|
deg1mul3.t |
|- .x. = ( .r ` P ) |
| 6 |
|
deg1mul3.a |
|- A = ( algSc ` P ) |
| 7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 8 |
3 7
|
rrgss |
|- E C_ ( Base ` R ) |
| 9 |
8
|
sseli |
|- ( F e. E -> F e. ( Base ` R ) ) |
| 10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 11 |
2 4 7 6 5 10
|
coe1sclmul |
|- ( ( R e. Ring /\ F e. ( Base ` R ) /\ G e. B ) -> ( coe1 ` ( ( A ` F ) .x. G ) ) = ( ( NN0 X. { F } ) oF ( .r ` R ) ( coe1 ` G ) ) ) |
| 12 |
9 11
|
syl3an2 |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> ( coe1 ` ( ( A ` F ) .x. G ) ) = ( ( NN0 X. { F } ) oF ( .r ` R ) ( coe1 ` G ) ) ) |
| 13 |
12
|
oveq1d |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> ( ( coe1 ` ( ( A ` F ) .x. G ) ) supp ( 0g ` R ) ) = ( ( ( NN0 X. { F } ) oF ( .r ` R ) ( coe1 ` G ) ) supp ( 0g ` R ) ) ) |
| 14 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 15 |
|
nn0ex |
|- NN0 e. _V |
| 16 |
15
|
a1i |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> NN0 e. _V ) |
| 17 |
|
simp1 |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> R e. Ring ) |
| 18 |
|
simp2 |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> F e. E ) |
| 19 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
| 20 |
19 4 2 7
|
coe1f |
|- ( G e. B -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) |
| 21 |
20
|
3ad2ant3 |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> ( coe1 ` G ) : NN0 --> ( Base ` R ) ) |
| 22 |
3 7 10 14 16 17 18 21
|
rrgsupp |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> ( ( ( NN0 X. { F } ) oF ( .r ` R ) ( coe1 ` G ) ) supp ( 0g ` R ) ) = ( ( coe1 ` G ) supp ( 0g ` R ) ) ) |
| 23 |
13 22
|
eqtrd |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> ( ( coe1 ` ( ( A ` F ) .x. G ) ) supp ( 0g ` R ) ) = ( ( coe1 ` G ) supp ( 0g ` R ) ) ) |
| 24 |
23
|
supeq1d |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> sup ( ( ( coe1 ` ( ( A ` F ) .x. G ) ) supp ( 0g ` R ) ) , RR* , < ) = sup ( ( ( coe1 ` G ) supp ( 0g ` R ) ) , RR* , < ) ) |
| 25 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> P e. Ring ) |
| 27 |
2 6 7 4
|
ply1sclf |
|- ( R e. Ring -> A : ( Base ` R ) --> B ) |
| 28 |
27
|
3ad2ant1 |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> A : ( Base ` R ) --> B ) |
| 29 |
9
|
3ad2ant2 |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> F e. ( Base ` R ) ) |
| 30 |
28 29
|
ffvelcdmd |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> ( A ` F ) e. B ) |
| 31 |
|
simp3 |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> G e. B ) |
| 32 |
4 5
|
ringcl |
|- ( ( P e. Ring /\ ( A ` F ) e. B /\ G e. B ) -> ( ( A ` F ) .x. G ) e. B ) |
| 33 |
26 30 31 32
|
syl3anc |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> ( ( A ` F ) .x. G ) e. B ) |
| 34 |
|
eqid |
|- ( coe1 ` ( ( A ` F ) .x. G ) ) = ( coe1 ` ( ( A ` F ) .x. G ) ) |
| 35 |
1 2 4 14 34
|
deg1val |
|- ( ( ( A ` F ) .x. G ) e. B -> ( D ` ( ( A ` F ) .x. G ) ) = sup ( ( ( coe1 ` ( ( A ` F ) .x. G ) ) supp ( 0g ` R ) ) , RR* , < ) ) |
| 36 |
33 35
|
syl |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> ( D ` ( ( A ` F ) .x. G ) ) = sup ( ( ( coe1 ` ( ( A ` F ) .x. G ) ) supp ( 0g ` R ) ) , RR* , < ) ) |
| 37 |
1 2 4 14 19
|
deg1val |
|- ( G e. B -> ( D ` G ) = sup ( ( ( coe1 ` G ) supp ( 0g ` R ) ) , RR* , < ) ) |
| 38 |
37
|
3ad2ant3 |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> ( D ` G ) = sup ( ( ( coe1 ` G ) supp ( 0g ` R ) ) , RR* , < ) ) |
| 39 |
24 36 38
|
3eqtr4d |
|- ( ( R e. Ring /\ F e. E /\ G e. B ) -> ( D ` ( ( A ` F ) .x. G ) ) = ( D ` G ) ) |