Metamath Proof Explorer


Theorem deg1mul3

Description: Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015) (Proof shortened by AV, 25-Jul-2019)

Ref Expression
Hypotheses deg1mul3.d D=deg1R
deg1mul3.p P=Poly1R
deg1mul3.e E=RLRegR
deg1mul3.b B=BaseP
deg1mul3.t ·˙=P
deg1mul3.a A=algScP
Assertion deg1mul3 RRingFEGBDAF·˙G=DG

Proof

Step Hyp Ref Expression
1 deg1mul3.d D=deg1R
2 deg1mul3.p P=Poly1R
3 deg1mul3.e E=RLRegR
4 deg1mul3.b B=BaseP
5 deg1mul3.t ·˙=P
6 deg1mul3.a A=algScP
7 eqid BaseR=BaseR
8 3 7 rrgss EBaseR
9 8 sseli FEFBaseR
10 eqid R=R
11 2 4 7 6 5 10 coe1sclmul RRingFBaseRGBcoe1AF·˙G=0×FRfcoe1G
12 9 11 syl3an2 RRingFEGBcoe1AF·˙G=0×FRfcoe1G
13 12 oveq1d RRingFEGBcoe1AF·˙Gsupp0R=0×FRfcoe1Gsupp0R
14 eqid 0R=0R
15 nn0ex 0V
16 15 a1i RRingFEGB0V
17 simp1 RRingFEGBRRing
18 simp2 RRingFEGBFE
19 eqid coe1G=coe1G
20 19 4 2 7 coe1f GBcoe1G:0BaseR
21 20 3ad2ant3 RRingFEGBcoe1G:0BaseR
22 3 7 10 14 16 17 18 21 rrgsupp RRingFEGB0×FRfcoe1Gsupp0R=coe1Gsupp0R
23 13 22 eqtrd RRingFEGBcoe1AF·˙Gsupp0R=coe1Gsupp0R
24 23 supeq1d RRingFEGBsupcoe1AF·˙Gsupp0R*<=supcoe1Gsupp0R*<
25 2 ply1ring RRingPRing
26 25 3ad2ant1 RRingFEGBPRing
27 2 6 7 4 ply1sclf RRingA:BaseRB
28 27 3ad2ant1 RRingFEGBA:BaseRB
29 9 3ad2ant2 RRingFEGBFBaseR
30 28 29 ffvelcdmd RRingFEGBAFB
31 simp3 RRingFEGBGB
32 4 5 ringcl PRingAFBGBAF·˙GB
33 26 30 31 32 syl3anc RRingFEGBAF·˙GB
34 eqid coe1AF·˙G=coe1AF·˙G
35 1 2 4 14 34 deg1val AF·˙GBDAF·˙G=supcoe1AF·˙Gsupp0R*<
36 33 35 syl RRingFEGBDAF·˙G=supcoe1AF·˙Gsupp0R*<
37 1 2 4 14 19 deg1val GBDG=supcoe1Gsupp0R*<
38 37 3ad2ant3 RRingFEGBDG=supcoe1Gsupp0R*<
39 24 36 38 3eqtr4d RRingFEGBDAF·˙G=DG