Description: Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015) (Proof shortened by AV, 25-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | deg1mul3.d | |
|
deg1mul3.p | |
||
deg1mul3.e | |
||
deg1mul3.b | |
||
deg1mul3.t | |
||
deg1mul3.a | |
||
Assertion | deg1mul3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1mul3.d | |
|
2 | deg1mul3.p | |
|
3 | deg1mul3.e | |
|
4 | deg1mul3.b | |
|
5 | deg1mul3.t | |
|
6 | deg1mul3.a | |
|
7 | eqid | |
|
8 | 3 7 | rrgss | |
9 | 8 | sseli | |
10 | eqid | |
|
11 | 2 4 7 6 5 10 | coe1sclmul | |
12 | 9 11 | syl3an2 | |
13 | 12 | oveq1d | |
14 | eqid | |
|
15 | nn0ex | |
|
16 | 15 | a1i | |
17 | simp1 | |
|
18 | simp2 | |
|
19 | eqid | |
|
20 | 19 4 2 7 | coe1f | |
21 | 20 | 3ad2ant3 | |
22 | 3 7 10 14 16 17 18 21 | rrgsupp | |
23 | 13 22 | eqtrd | |
24 | 23 | supeq1d | |
25 | 2 | ply1ring | |
26 | 25 | 3ad2ant1 | |
27 | 2 6 7 4 | ply1sclf | |
28 | 27 | 3ad2ant1 | |
29 | 9 | 3ad2ant2 | |
30 | 28 29 | ffvelcdmd | |
31 | simp3 | |
|
32 | 4 5 | ringcl | |
33 | 26 30 31 32 | syl3anc | |
34 | eqid | |
|
35 | 1 2 4 14 34 | deg1val | |
36 | 33 35 | syl | |
37 | 1 2 4 14 19 | deg1val | |
38 | 37 | 3ad2ant3 | |
39 | 24 36 38 | 3eqtr4d | |