| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1addle.y |
|- Y = ( Poly1 ` R ) |
| 2 |
|
deg1addle.d |
|- D = ( deg1 ` R ) |
| 3 |
|
deg1addle.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
deg1suble.b |
|- B = ( Base ` Y ) |
| 5 |
|
deg1suble.m |
|- .- = ( -g ` Y ) |
| 6 |
|
deg1suble.f |
|- ( ph -> F e. B ) |
| 7 |
|
deg1suble.g |
|- ( ph -> G e. B ) |
| 8 |
|
eqid |
|- ( +g ` Y ) = ( +g ` Y ) |
| 9 |
1
|
ply1ring |
|- ( R e. Ring -> Y e. Ring ) |
| 10 |
|
ringgrp |
|- ( Y e. Ring -> Y e. Grp ) |
| 11 |
3 9 10
|
3syl |
|- ( ph -> Y e. Grp ) |
| 12 |
|
eqid |
|- ( invg ` Y ) = ( invg ` Y ) |
| 13 |
4 12
|
grpinvcl |
|- ( ( Y e. Grp /\ G e. B ) -> ( ( invg ` Y ) ` G ) e. B ) |
| 14 |
11 7 13
|
syl2anc |
|- ( ph -> ( ( invg ` Y ) ` G ) e. B ) |
| 15 |
1 2 3 4 8 6 14
|
deg1addle |
|- ( ph -> ( D ` ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) <_ if ( ( D ` F ) <_ ( D ` ( ( invg ` Y ) ` G ) ) , ( D ` ( ( invg ` Y ) ` G ) ) , ( D ` F ) ) ) |
| 16 |
4 8 12 5
|
grpsubval |
|- ( ( F e. B /\ G e. B ) -> ( F .- G ) = ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) |
| 17 |
6 7 16
|
syl2anc |
|- ( ph -> ( F .- G ) = ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) |
| 18 |
17
|
fveq2d |
|- ( ph -> ( D ` ( F .- G ) ) = ( D ` ( F ( +g ` Y ) ( ( invg ` Y ) ` G ) ) ) ) |
| 19 |
1 2 3 4 12 7
|
deg1invg |
|- ( ph -> ( D ` ( ( invg ` Y ) ` G ) ) = ( D ` G ) ) |
| 20 |
19
|
eqcomd |
|- ( ph -> ( D ` G ) = ( D ` ( ( invg ` Y ) ` G ) ) ) |
| 21 |
20
|
breq2d |
|- ( ph -> ( ( D ` F ) <_ ( D ` G ) <-> ( D ` F ) <_ ( D ` ( ( invg ` Y ) ` G ) ) ) ) |
| 22 |
21 20
|
ifbieq1d |
|- ( ph -> if ( ( D ` F ) <_ ( D ` G ) , ( D ` G ) , ( D ` F ) ) = if ( ( D ` F ) <_ ( D ` ( ( invg ` Y ) ` G ) ) , ( D ` ( ( invg ` Y ) ` G ) ) , ( D ` F ) ) ) |
| 23 |
15 18 22
|
3brtr4d |
|- ( ph -> ( D ` ( F .- G ) ) <_ if ( ( D ` F ) <_ ( D ` G ) , ( D ` G ) , ( D ` F ) ) ) |