| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfclnbgr3.v |
|- V = ( Vtx ` G ) |
| 2 |
|
dfclnbgr3.i |
|- I = ( iEdg ` G ) |
| 3 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 4 |
3
|
eqcomi |
|- ran ( iEdg ` G ) = ( Edg ` G ) |
| 5 |
1 4
|
clnbgrval |
|- ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. ran ( iEdg ` G ) { N , n } C_ e } ) ) |
| 6 |
5
|
adantr |
|- ( ( N e. V /\ Fun I ) -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. ran ( iEdg ` G ) { N , n } C_ e } ) ) |
| 7 |
2
|
eqcomi |
|- ( iEdg ` G ) = I |
| 8 |
7
|
rneqi |
|- ran ( iEdg ` G ) = ran I |
| 9 |
8
|
rexeqi |
|- ( E. e e. ran ( iEdg ` G ) { N , n } C_ e <-> E. e e. ran I { N , n } C_ e ) |
| 10 |
|
funfn |
|- ( Fun I <-> I Fn dom I ) |
| 11 |
10
|
biimpi |
|- ( Fun I -> I Fn dom I ) |
| 12 |
11
|
adantl |
|- ( ( N e. V /\ Fun I ) -> I Fn dom I ) |
| 13 |
|
sseq2 |
|- ( e = ( I ` i ) -> ( { N , n } C_ e <-> { N , n } C_ ( I ` i ) ) ) |
| 14 |
13
|
rexrn |
|- ( I Fn dom I -> ( E. e e. ran I { N , n } C_ e <-> E. i e. dom I { N , n } C_ ( I ` i ) ) ) |
| 15 |
12 14
|
syl |
|- ( ( N e. V /\ Fun I ) -> ( E. e e. ran I { N , n } C_ e <-> E. i e. dom I { N , n } C_ ( I ` i ) ) ) |
| 16 |
9 15
|
bitrid |
|- ( ( N e. V /\ Fun I ) -> ( E. e e. ran ( iEdg ` G ) { N , n } C_ e <-> E. i e. dom I { N , n } C_ ( I ` i ) ) ) |
| 17 |
16
|
rabbidv |
|- ( ( N e. V /\ Fun I ) -> { n e. V | E. e e. ran ( iEdg ` G ) { N , n } C_ e } = { n e. V | E. i e. dom I { N , n } C_ ( I ` i ) } ) |
| 18 |
17
|
uneq2d |
|- ( ( N e. V /\ Fun I ) -> ( { N } u. { n e. V | E. e e. ran ( iEdg ` G ) { N , n } C_ e } ) = ( { N } u. { n e. V | E. i e. dom I { N , n } C_ ( I ` i ) } ) ) |
| 19 |
6 18
|
eqtrd |
|- ( ( N e. V /\ Fun I ) -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. i e. dom I { N , n } C_ ( I ` i ) } ) ) |