Step |
Hyp |
Ref |
Expression |
1 |
|
gcdcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
2 |
|
simplr |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) /\ A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) -> d e. NN0 ) |
3 |
2
|
nn0zd |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) /\ A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) -> d e. ZZ ) |
4 |
|
iddvds |
|- ( d e. ZZ -> d || d ) |
5 |
3 4
|
syl |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) /\ A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) -> d || d ) |
6 |
|
simpr |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) /\ A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) -> A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) |
7 |
|
breq1 |
|- ( z = d -> ( z || d <-> d || d ) ) |
8 |
|
breq1 |
|- ( z = d -> ( z || M <-> d || M ) ) |
9 |
|
breq1 |
|- ( z = d -> ( z || N <-> d || N ) ) |
10 |
8 9
|
anbi12d |
|- ( z = d -> ( ( z || M /\ z || N ) <-> ( d || M /\ d || N ) ) ) |
11 |
7 10
|
bibi12d |
|- ( z = d -> ( ( z || d <-> ( z || M /\ z || N ) ) <-> ( d || d <-> ( d || M /\ d || N ) ) ) ) |
12 |
11
|
rspcv |
|- ( d e. ZZ -> ( A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) -> ( d || d <-> ( d || M /\ d || N ) ) ) ) |
13 |
3 6 12
|
sylc |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) /\ A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) -> ( d || d <-> ( d || M /\ d || N ) ) ) |
14 |
5 13
|
mpbid |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) /\ A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) -> ( d || M /\ d || N ) ) |
15 |
|
biimpr |
|- ( ( z || d <-> ( z || M /\ z || N ) ) -> ( ( z || M /\ z || N ) -> z || d ) ) |
16 |
15
|
ralimi |
|- ( A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) -> A. z e. ZZ ( ( z || M /\ z || N ) -> z || d ) ) |
17 |
6 16
|
syl |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) /\ A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) -> A. z e. ZZ ( ( z || M /\ z || N ) -> z || d ) ) |
18 |
|
dfgcd2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( d = ( M gcd N ) <-> ( 0 <_ d /\ ( d || M /\ d || N ) /\ A. z e. ZZ ( ( z || M /\ z || N ) -> z || d ) ) ) ) |
19 |
18
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) -> ( d = ( M gcd N ) <-> ( 0 <_ d /\ ( d || M /\ d || N ) /\ A. z e. ZZ ( ( z || M /\ z || N ) -> z || d ) ) ) ) |
20 |
|
simpr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) -> d e. NN0 ) |
21 |
20
|
nn0ge0d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) -> 0 <_ d ) |
22 |
21
|
3biant1d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) -> ( ( ( d || M /\ d || N ) /\ A. z e. ZZ ( ( z || M /\ z || N ) -> z || d ) ) <-> ( 0 <_ d /\ ( d || M /\ d || N ) /\ A. z e. ZZ ( ( z || M /\ z || N ) -> z || d ) ) ) ) |
23 |
19 22
|
bitr4d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) -> ( d = ( M gcd N ) <-> ( ( d || M /\ d || N ) /\ A. z e. ZZ ( ( z || M /\ z || N ) -> z || d ) ) ) ) |
24 |
23
|
adantr |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) /\ A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) -> ( d = ( M gcd N ) <-> ( ( d || M /\ d || N ) /\ A. z e. ZZ ( ( z || M /\ z || N ) -> z || d ) ) ) ) |
25 |
14 17 24
|
mpbir2and |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) /\ A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) -> d = ( M gcd N ) ) |
26 |
25
|
ex |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) -> ( A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) -> d = ( M gcd N ) ) ) |
27 |
|
dvdsgcdb |
|- ( ( z e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( z || M /\ z || N ) <-> z || ( M gcd N ) ) ) |
28 |
27
|
bicomd |
|- ( ( z e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( z || ( M gcd N ) <-> ( z || M /\ z || N ) ) ) |
29 |
28
|
3coml |
|- ( ( M e. ZZ /\ N e. ZZ /\ z e. ZZ ) -> ( z || ( M gcd N ) <-> ( z || M /\ z || N ) ) ) |
30 |
29
|
ad4ant124 |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ d = ( M gcd N ) ) /\ z e. ZZ ) -> ( z || ( M gcd N ) <-> ( z || M /\ z || N ) ) ) |
31 |
|
breq2 |
|- ( d = ( M gcd N ) -> ( z || d <-> z || ( M gcd N ) ) ) |
32 |
31
|
bibi1d |
|- ( d = ( M gcd N ) -> ( ( z || d <-> ( z || M /\ z || N ) ) <-> ( z || ( M gcd N ) <-> ( z || M /\ z || N ) ) ) ) |
33 |
32
|
ad2antlr |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ d = ( M gcd N ) ) /\ z e. ZZ ) -> ( ( z || d <-> ( z || M /\ z || N ) ) <-> ( z || ( M gcd N ) <-> ( z || M /\ z || N ) ) ) ) |
34 |
30 33
|
mpbird |
|- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ d = ( M gcd N ) ) /\ z e. ZZ ) -> ( z || d <-> ( z || M /\ z || N ) ) ) |
35 |
34
|
ralrimiva |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ d = ( M gcd N ) ) -> A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) |
36 |
35
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( d = ( M gcd N ) -> A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) ) |
37 |
36
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) -> ( d = ( M gcd N ) -> A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) ) |
38 |
26 37
|
impbid |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ d e. NN0 ) -> ( A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) <-> d = ( M gcd N ) ) ) |
39 |
1 38
|
riota5 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( iota_ d e. NN0 A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) = ( M gcd N ) ) |
40 |
39
|
eqcomd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( iota_ d e. NN0 A. z e. ZZ ( z || d <-> ( z || M /\ z || N ) ) ) ) |