| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  ∈  ℕ0 ) | 
						
							| 2 |  | simplr | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  ∧  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) )  →  𝑑  ∈  ℕ0 ) | 
						
							| 3 | 2 | nn0zd | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  ∧  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) )  →  𝑑  ∈  ℤ ) | 
						
							| 4 |  | iddvds | ⊢ ( 𝑑  ∈  ℤ  →  𝑑  ∥  𝑑 ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  ∧  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) )  →  𝑑  ∥  𝑑 ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  ∧  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) )  →  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) ) | 
						
							| 7 |  | breq1 | ⊢ ( 𝑧  =  𝑑  →  ( 𝑧  ∥  𝑑  ↔  𝑑  ∥  𝑑 ) ) | 
						
							| 8 |  | breq1 | ⊢ ( 𝑧  =  𝑑  →  ( 𝑧  ∥  𝑀  ↔  𝑑  ∥  𝑀 ) ) | 
						
							| 9 |  | breq1 | ⊢ ( 𝑧  =  𝑑  →  ( 𝑧  ∥  𝑁  ↔  𝑑  ∥  𝑁 ) ) | 
						
							| 10 | 8 9 | anbi12d | ⊢ ( 𝑧  =  𝑑  →  ( ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 )  ↔  ( 𝑑  ∥  𝑀  ∧  𝑑  ∥  𝑁 ) ) ) | 
						
							| 11 | 7 10 | bibi12d | ⊢ ( 𝑧  =  𝑑  →  ( ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) )  ↔  ( 𝑑  ∥  𝑑  ↔  ( 𝑑  ∥  𝑀  ∧  𝑑  ∥  𝑁 ) ) ) ) | 
						
							| 12 | 11 | rspcv | ⊢ ( 𝑑  ∈  ℤ  →  ( ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) )  →  ( 𝑑  ∥  𝑑  ↔  ( 𝑑  ∥  𝑀  ∧  𝑑  ∥  𝑁 ) ) ) ) | 
						
							| 13 | 3 6 12 | sylc | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  ∧  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) )  →  ( 𝑑  ∥  𝑑  ↔  ( 𝑑  ∥  𝑀  ∧  𝑑  ∥  𝑁 ) ) ) | 
						
							| 14 | 5 13 | mpbid | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  ∧  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) )  →  ( 𝑑  ∥  𝑀  ∧  𝑑  ∥  𝑁 ) ) | 
						
							| 15 |  | biimpr | ⊢ ( ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) )  →  ( ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 )  →  𝑧  ∥  𝑑 ) ) | 
						
							| 16 | 15 | ralimi | ⊢ ( ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) )  →  ∀ 𝑧  ∈  ℤ ( ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 )  →  𝑧  ∥  𝑑 ) ) | 
						
							| 17 | 6 16 | syl | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  ∧  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) )  →  ∀ 𝑧  ∈  ℤ ( ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 )  →  𝑧  ∥  𝑑 ) ) | 
						
							| 18 |  | dfgcd2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑑  =  ( 𝑀  gcd  𝑁 )  ↔  ( 0  ≤  𝑑  ∧  ( 𝑑  ∥  𝑀  ∧  𝑑  ∥  𝑁 )  ∧  ∀ 𝑧  ∈  ℤ ( ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 )  →  𝑧  ∥  𝑑 ) ) ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑑  =  ( 𝑀  gcd  𝑁 )  ↔  ( 0  ≤  𝑑  ∧  ( 𝑑  ∥  𝑀  ∧  𝑑  ∥  𝑁 )  ∧  ∀ 𝑧  ∈  ℤ ( ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 )  →  𝑧  ∥  𝑑 ) ) ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  →  𝑑  ∈  ℕ0 ) | 
						
							| 21 | 20 | nn0ge0d | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  →  0  ≤  𝑑 ) | 
						
							| 22 | 21 | 3biant1d | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  →  ( ( ( 𝑑  ∥  𝑀  ∧  𝑑  ∥  𝑁 )  ∧  ∀ 𝑧  ∈  ℤ ( ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 )  →  𝑧  ∥  𝑑 ) )  ↔  ( 0  ≤  𝑑  ∧  ( 𝑑  ∥  𝑀  ∧  𝑑  ∥  𝑁 )  ∧  ∀ 𝑧  ∈  ℤ ( ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 )  →  𝑧  ∥  𝑑 ) ) ) ) | 
						
							| 23 | 19 22 | bitr4d | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑑  =  ( 𝑀  gcd  𝑁 )  ↔  ( ( 𝑑  ∥  𝑀  ∧  𝑑  ∥  𝑁 )  ∧  ∀ 𝑧  ∈  ℤ ( ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 )  →  𝑧  ∥  𝑑 ) ) ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  ∧  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) )  →  ( 𝑑  =  ( 𝑀  gcd  𝑁 )  ↔  ( ( 𝑑  ∥  𝑀  ∧  𝑑  ∥  𝑁 )  ∧  ∀ 𝑧  ∈  ℤ ( ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 )  →  𝑧  ∥  𝑑 ) ) ) ) | 
						
							| 25 | 14 17 24 | mpbir2and | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  ∧  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) )  →  𝑑  =  ( 𝑀  gcd  𝑁 ) ) | 
						
							| 26 | 25 | ex | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  →  ( ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) )  →  𝑑  =  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 27 |  | dvdsgcdb | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 )  ↔  𝑧  ∥  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 28 | 27 | bicomd | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑧  ∥  ( 𝑀  gcd  𝑁 )  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) ) | 
						
							| 29 | 28 | 3coml | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( 𝑧  ∥  ( 𝑀  gcd  𝑁 )  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) ) | 
						
							| 30 | 29 | ad4ant124 | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  =  ( 𝑀  gcd  𝑁 ) )  ∧  𝑧  ∈  ℤ )  →  ( 𝑧  ∥  ( 𝑀  gcd  𝑁 )  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) ) | 
						
							| 31 |  | breq2 | ⊢ ( 𝑑  =  ( 𝑀  gcd  𝑁 )  →  ( 𝑧  ∥  𝑑  ↔  𝑧  ∥  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 32 | 31 | bibi1d | ⊢ ( 𝑑  =  ( 𝑀  gcd  𝑁 )  →  ( ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) )  ↔  ( 𝑧  ∥  ( 𝑀  gcd  𝑁 )  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) ) ) | 
						
							| 33 | 32 | ad2antlr | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  =  ( 𝑀  gcd  𝑁 ) )  ∧  𝑧  ∈  ℤ )  →  ( ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) )  ↔  ( 𝑧  ∥  ( 𝑀  gcd  𝑁 )  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) ) ) | 
						
							| 34 | 30 33 | mpbird | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  =  ( 𝑀  gcd  𝑁 ) )  ∧  𝑧  ∈  ℤ )  →  ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) ) | 
						
							| 35 | 34 | ralrimiva | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  =  ( 𝑀  gcd  𝑁 ) )  →  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) ) | 
						
							| 36 | 35 | ex | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑑  =  ( 𝑀  gcd  𝑁 )  →  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  →  ( 𝑑  =  ( 𝑀  gcd  𝑁 )  →  ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) ) ) | 
						
							| 38 | 26 37 | impbid | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝑑  ∈  ℕ0 )  →  ( ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) )  ↔  𝑑  =  ( 𝑀  gcd  𝑁 ) ) ) | 
						
							| 39 | 1 38 | riota5 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ℩ 𝑑  ∈  ℕ0 ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) )  =  ( 𝑀  gcd  𝑁 ) ) | 
						
							| 40 | 39 | eqcomd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  gcd  𝑁 )  =  ( ℩ 𝑑  ∈  ℕ0 ∀ 𝑧  ∈  ℤ ( 𝑧  ∥  𝑑  ↔  ( 𝑧  ∥  𝑀  ∧  𝑧  ∥  𝑁 ) ) ) ) |