| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvadia.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | dvadia.u |  |-  U = ( ( DVecA ` K ) ` W ) | 
						
							| 3 |  | dvadia.i |  |-  I = ( ( DIsoA ` K ) ` W ) | 
						
							| 4 |  | dvadia.n |  |-  ._|_ = ( ( ocA ` K ) ` W ) | 
						
							| 5 |  | dvadia.s |  |-  S = ( LSubSp ` U ) | 
						
							| 6 | 1 3 | diaf11N |  |-  ( ( K e. HL /\ W e. H ) -> I : dom I -1-1-onto-> ran I ) | 
						
							| 7 |  | f1of1 |  |-  ( I : dom I -1-1-onto-> ran I -> I : dom I -1-1-> ran I ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( K e. HL /\ W e. H ) -> I : dom I -1-1-> ran I ) | 
						
							| 9 | 1 2 3 4 5 | diarnN |  |-  ( ( K e. HL /\ W e. H ) -> ran I = { x e. S | ( ._|_ ` ( ._|_ ` x ) ) = x } ) | 
						
							| 10 |  | f1eq3 |  |-  ( ran I = { x e. S | ( ._|_ ` ( ._|_ ` x ) ) = x } -> ( I : dom I -1-1-> ran I <-> I : dom I -1-1-> { x e. S | ( ._|_ ` ( ._|_ ` x ) ) = x } ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( K e. HL /\ W e. H ) -> ( I : dom I -1-1-> ran I <-> I : dom I -1-1-> { x e. S | ( ._|_ ` ( ._|_ ` x ) ) = x } ) ) | 
						
							| 12 | 8 11 | mpbid |  |-  ( ( K e. HL /\ W e. H ) -> I : dom I -1-1-> { x e. S | ( ._|_ ` ( ._|_ ` x ) ) = x } ) | 
						
							| 13 |  | dff1o5 |  |-  ( I : dom I -1-1-onto-> { x e. S | ( ._|_ ` ( ._|_ ` x ) ) = x } <-> ( I : dom I -1-1-> { x e. S | ( ._|_ ` ( ._|_ ` x ) ) = x } /\ ran I = { x e. S | ( ._|_ ` ( ._|_ ` x ) ) = x } ) ) | 
						
							| 14 | 12 9 13 | sylanbrc |  |-  ( ( K e. HL /\ W e. H ) -> I : dom I -1-1-onto-> { x e. S | ( ._|_ ` ( ._|_ ` x ) ) = x } ) |