| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvadia.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | dvadia.u |  |-  U = ( ( DVecA ` K ) ` W ) | 
						
							| 3 |  | dvadia.i |  |-  I = ( ( DIsoA ` K ) ` W ) | 
						
							| 4 |  | dvadia.n |  |-  ._|_ = ( ( ocA ` K ) ` W ) | 
						
							| 5 |  | dvadia.s |  |-  S = ( LSubSp ` U ) | 
						
							| 6 | 1 2 3 5 | diasslssN |  |-  ( ( K e. HL /\ W e. H ) -> ran I C_ S ) | 
						
							| 7 |  | sseqin2 |  |-  ( ran I C_ S <-> ( S i^i ran I ) = ran I ) | 
						
							| 8 | 6 7 | sylib |  |-  ( ( K e. HL /\ W e. H ) -> ( S i^i ran I ) = ran I ) | 
						
							| 9 | 1 3 4 | doca3N |  |-  ( ( ( K e. HL /\ W e. H ) /\ x e. ran I ) -> ( ._|_ ` ( ._|_ ` x ) ) = x ) | 
						
							| 10 | 9 | ex |  |-  ( ( K e. HL /\ W e. H ) -> ( x e. ran I -> ( ._|_ ` ( ._|_ ` x ) ) = x ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ x e. S ) -> ( x e. ran I -> ( ._|_ ` ( ._|_ ` x ) ) = x ) ) | 
						
							| 12 | 1 2 3 4 5 | dvadiaN |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( x e. S /\ ( ._|_ ` ( ._|_ ` x ) ) = x ) ) -> x e. ran I ) | 
						
							| 13 | 12 | expr |  |-  ( ( ( K e. HL /\ W e. H ) /\ x e. S ) -> ( ( ._|_ ` ( ._|_ ` x ) ) = x -> x e. ran I ) ) | 
						
							| 14 | 11 13 | impbid |  |-  ( ( ( K e. HL /\ W e. H ) /\ x e. S ) -> ( x e. ran I <-> ( ._|_ ` ( ._|_ ` x ) ) = x ) ) | 
						
							| 15 | 14 | rabbi2dva |  |-  ( ( K e. HL /\ W e. H ) -> ( S i^i ran I ) = { x e. S | ( ._|_ ` ( ._|_ ` x ) ) = x } ) | 
						
							| 16 | 8 15 | eqtr3d |  |-  ( ( K e. HL /\ W e. H ) -> ran I = { x e. S | ( ._|_ ` ( ._|_ ` x ) ) = x } ) |