Metamath Proof Explorer


Theorem diarnN

Description: Partial isomorphism A maps onto the set of all closed subspaces of partial vector space A. Part of Lemma M of Crawley p. 121 line 12, with closed subspaces rather than subspaces. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dvadia.h 𝐻 = ( LHyp ‘ 𝐾 )
dvadia.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dvadia.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
dvadia.n = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 )
dvadia.s 𝑆 = ( LSubSp ‘ 𝑈 )
Assertion diarnN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ran 𝐼 = { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } )

Proof

Step Hyp Ref Expression
1 dvadia.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvadia.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
3 dvadia.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
4 dvadia.n = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 )
5 dvadia.s 𝑆 = ( LSubSp ‘ 𝑈 )
6 1 2 3 5 diasslssN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ran 𝐼𝑆 )
7 sseqin2 ( ran 𝐼𝑆 ↔ ( 𝑆 ∩ ran 𝐼 ) = ran 𝐼 )
8 6 7 sylib ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑆 ∩ ran 𝐼 ) = ran 𝐼 )
9 1 3 4 doca3N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥 ∈ ran 𝐼 ) → ( ‘ ( 𝑥 ) ) = 𝑥 )
10 9 ex ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑥 ∈ ran 𝐼 → ( ‘ ( 𝑥 ) ) = 𝑥 ) )
11 10 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥𝑆 ) → ( 𝑥 ∈ ran 𝐼 → ( ‘ ( 𝑥 ) ) = 𝑥 ) )
12 1 2 3 4 5 dvadiaN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑥𝑆 ∧ ( ‘ ( 𝑥 ) ) = 𝑥 ) ) → 𝑥 ∈ ran 𝐼 )
13 12 expr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥𝑆 ) → ( ( ‘ ( 𝑥 ) ) = 𝑥𝑥 ∈ ran 𝐼 ) )
14 11 13 impbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥𝑆 ) → ( 𝑥 ∈ ran 𝐼 ↔ ( ‘ ( 𝑥 ) ) = 𝑥 ) )
15 14 rabbi2dva ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑆 ∩ ran 𝐼 ) = { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } )
16 8 15 eqtr3d ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ran 𝐼 = { 𝑥𝑆 ∣ ( ‘ ( 𝑥 ) ) = 𝑥 } )