Step |
Hyp |
Ref |
Expression |
1 |
|
dvadia.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvadia.u |
⊢ 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvadia.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvadia.n |
⊢ ⊥ = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dvadia.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
1 2 3 5
|
diasslssN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ran 𝐼 ⊆ 𝑆 ) |
7 |
|
sseqin2 |
⊢ ( ran 𝐼 ⊆ 𝑆 ↔ ( 𝑆 ∩ ran 𝐼 ) = ran 𝐼 ) |
8 |
6 7
|
sylib |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑆 ∩ ran 𝐼 ) = ran 𝐼 ) |
9 |
1 3 4
|
doca3N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ran 𝐼 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) |
10 |
9
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑥 ∈ ran 𝐼 → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ran 𝐼 → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
12 |
1 2 3 4 5
|
dvadiaN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑆 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) → 𝑥 ∈ ran 𝐼 ) |
13 |
12
|
expr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 → 𝑥 ∈ ran 𝐼 ) ) |
14 |
11 13
|
impbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ran 𝐼 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
15 |
14
|
rabbi2dva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑆 ∩ ran 𝐼 ) = { 𝑥 ∈ 𝑆 ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } ) |
16 |
8 15
|
eqtr3d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ran 𝐼 = { 𝑥 ∈ 𝑆 ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } ) |