| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvadia.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dvadia.u |
⊢ 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dvadia.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dvadia.n |
⊢ ⊥ = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dvadia.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 6 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 8 |
7 5
|
lssss |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ⊆ ( Base ‘ 𝑈 ) ) |
| 9 |
8
|
ad2antrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) → 𝑋 ⊆ ( Base ‘ 𝑈 ) ) |
| 10 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
1 10 2 7
|
dvavbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝑈 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) → ( Base ‘ 𝑈 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 13 |
9 12
|
sseqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) → 𝑋 ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 14 |
1 10 3 4
|
docaclN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ 𝑋 ) ∈ ran 𝐼 ) |
| 15 |
13 14
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) → ( ⊥ ‘ 𝑋 ) ∈ ran 𝐼 ) |
| 16 |
1 10 3
|
diaelrnN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ran 𝐼 ) → ( ⊥ ‘ 𝑋 ) ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 17 |
15 16
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) → ( ⊥ ‘ 𝑋 ) ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 18 |
1 10 3 4
|
docaclN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran 𝐼 ) |
| 19 |
17 18
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran 𝐼 ) |
| 20 |
6 19
|
eqeltrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) → 𝑋 ∈ ran 𝐼 ) |