Metamath Proof Explorer


Theorem dvadiaN

Description: Any closed subspace is a member of the range of partial isomorphism A, showing the isomorphism maps onto the set of closed subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dvadia.h H = LHyp K
dvadia.u U = DVecA K W
dvadia.i I = DIsoA K W
dvadia.n ˙ = ocA K W
dvadia.s S = LSubSp U
Assertion dvadiaN K HL W H X S ˙ ˙ X = X X ran I

Proof

Step Hyp Ref Expression
1 dvadia.h H = LHyp K
2 dvadia.u U = DVecA K W
3 dvadia.i I = DIsoA K W
4 dvadia.n ˙ = ocA K W
5 dvadia.s S = LSubSp U
6 simprr K HL W H X S ˙ ˙ X = X ˙ ˙ X = X
7 eqid Base U = Base U
8 7 5 lssss X S X Base U
9 8 ad2antrl K HL W H X S ˙ ˙ X = X X Base U
10 eqid LTrn K W = LTrn K W
11 1 10 2 7 dvavbase K HL W H Base U = LTrn K W
12 11 adantr K HL W H X S ˙ ˙ X = X Base U = LTrn K W
13 9 12 sseqtrd K HL W H X S ˙ ˙ X = X X LTrn K W
14 1 10 3 4 docaclN K HL W H X LTrn K W ˙ X ran I
15 13 14 syldan K HL W H X S ˙ ˙ X = X ˙ X ran I
16 1 10 3 diaelrnN K HL W H ˙ X ran I ˙ X LTrn K W
17 15 16 syldan K HL W H X S ˙ ˙ X = X ˙ X LTrn K W
18 1 10 3 4 docaclN K HL W H ˙ X LTrn K W ˙ ˙ X ran I
19 17 18 syldan K HL W H X S ˙ ˙ X = X ˙ ˙ X ran I
20 6 19 eqeltrrd K HL W H X S ˙ ˙ X = X X ran I