Metamath Proof Explorer


Theorem docaclN

Description: Closure of subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses docacl.h H = LHyp K
docacl.t T = LTrn K W
docacl.i I = DIsoA K W
docacl.n ˙ = ocA K W
Assertion docaclN K HL W H X T ˙ X ran I

Proof

Step Hyp Ref Expression
1 docacl.h H = LHyp K
2 docacl.t T = LTrn K W
3 docacl.i I = DIsoA K W
4 docacl.n ˙ = ocA K W
5 eqid join K = join K
6 eqid meet K = meet K
7 eqid oc K = oc K
8 5 6 7 1 2 3 4 docavalN K HL W H X T ˙ X = I oc K I -1 z ran I | X z join K oc K W meet K W
9 1 3 diaf11N K HL W H I : dom I 1-1 onto ran I
10 f1ofun I : dom I 1-1 onto ran I Fun I
11 9 10 syl K HL W H Fun I
12 11 adantr K HL W H X T Fun I
13 hllat K HL K Lat
14 13 ad2antrr K HL W H X T K Lat
15 hlop K HL K OP
16 15 ad2antrr K HL W H X T K OP
17 simpl K HL W H X T K HL W H
18 ssrab2 z ran I | X z ran I
19 18 a1i K HL W H X T z ran I | X z ran I
20 1 2 3 dia1elN K HL W H T ran I
21 20 anim1i K HL W H X T T ran I X T
22 sseq2 z = T X z X T
23 22 elrab T z ran I | X z T ran I X T
24 21 23 sylibr K HL W H X T T z ran I | X z
25 24 ne0d K HL W H X T z ran I | X z
26 1 3 diaintclN K HL W H z ran I | X z ran I z ran I | X z z ran I | X z ran I
27 17 19 25 26 syl12anc K HL W H X T z ran I | X z ran I
28 1 3 diacnvclN K HL W H z ran I | X z ran I I -1 z ran I | X z dom I
29 27 28 syldan K HL W H X T I -1 z ran I | X z dom I
30 eqid Base K = Base K
31 30 1 3 diadmclN K HL W H I -1 z ran I | X z dom I I -1 z ran I | X z Base K
32 29 31 syldan K HL W H X T I -1 z ran I | X z Base K
33 30 7 opoccl K OP I -1 z ran I | X z Base K oc K I -1 z ran I | X z Base K
34 16 32 33 syl2anc K HL W H X T oc K I -1 z ran I | X z Base K
35 30 1 lhpbase W H W Base K
36 35 ad2antlr K HL W H X T W Base K
37 30 7 opoccl K OP W Base K oc K W Base K
38 16 36 37 syl2anc K HL W H X T oc K W Base K
39 30 5 latjcl K Lat oc K I -1 z ran I | X z Base K oc K W Base K oc K I -1 z ran I | X z join K oc K W Base K
40 14 34 38 39 syl3anc K HL W H X T oc K I -1 z ran I | X z join K oc K W Base K
41 30 6 latmcl K Lat oc K I -1 z ran I | X z join K oc K W Base K W Base K oc K I -1 z ran I | X z join K oc K W meet K W Base K
42 14 40 36 41 syl3anc K HL W H X T oc K I -1 z ran I | X z join K oc K W meet K W Base K
43 eqid K = K
44 30 43 6 latmle2 K Lat oc K I -1 z ran I | X z join K oc K W Base K W Base K oc K I -1 z ran I | X z join K oc K W meet K W K W
45 14 40 36 44 syl3anc K HL W H X T oc K I -1 z ran I | X z join K oc K W meet K W K W
46 30 43 1 3 diaeldm K HL W H oc K I -1 z ran I | X z join K oc K W meet K W dom I oc K I -1 z ran I | X z join K oc K W meet K W Base K oc K I -1 z ran I | X z join K oc K W meet K W K W
47 46 adantr K HL W H X T oc K I -1 z ran I | X z join K oc K W meet K W dom I oc K I -1 z ran I | X z join K oc K W meet K W Base K oc K I -1 z ran I | X z join K oc K W meet K W K W
48 42 45 47 mpbir2and K HL W H X T oc K I -1 z ran I | X z join K oc K W meet K W dom I
49 fvelrn Fun I oc K I -1 z ran I | X z join K oc K W meet K W dom I I oc K I -1 z ran I | X z join K oc K W meet K W ran I
50 12 48 49 syl2anc K HL W H X T I oc K I -1 z ran I | X z join K oc K W meet K W ran I
51 8 50 eqeltrd K HL W H X T ˙ X ran I