Metamath Proof Explorer


Theorem diaocN

Description: Value of partial isomorphism A at lattice orthocomplement (using a Sasaki projection to get orthocomplement relative to the fiducial co-atom W ). (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diaoc.j ˙ = join K
diaoc.m ˙ = meet K
diaoc.o ˙ = oc K
diaoc.h H = LHyp K
diaoc.t T = LTrn K W
diaoc.i I = DIsoA K W
diaoc.n N = ocA K W
Assertion diaocN K HL W H X dom I I ˙ X ˙ ˙ W ˙ W = N I X

Proof

Step Hyp Ref Expression
1 diaoc.j ˙ = join K
2 diaoc.m ˙ = meet K
3 diaoc.o ˙ = oc K
4 diaoc.h H = LHyp K
5 diaoc.t T = LTrn K W
6 diaoc.i I = DIsoA K W
7 diaoc.n N = ocA K W
8 simpl K HL W H X dom I K HL W H
9 eqid Base K = Base K
10 9 4 6 diadmclN K HL W H X dom I X Base K
11 eqid K = K
12 11 4 6 diadmleN K HL W H X dom I X K W
13 9 11 4 5 6 diass K HL W H X Base K X K W I X T
14 8 10 12 13 syl12anc K HL W H X dom I I X T
15 1 2 3 4 5 6 7 docavalN K HL W H I X T N I X = I ˙ I -1 z ran I | I X z ˙ ˙ W ˙ W
16 14 15 syldan K HL W H X dom I N I X = I ˙ I -1 z ran I | I X z ˙ ˙ W ˙ W
17 4 6 diaclN K HL W H X dom I I X ran I
18 intmin I X ran I z ran I | I X z = I X
19 17 18 syl K HL W H X dom I z ran I | I X z = I X
20 19 fveq2d K HL W H X dom I I -1 z ran I | I X z = I -1 I X
21 4 6 diaf11N K HL W H I : dom I 1-1 onto ran I
22 f1ocnvfv1 I : dom I 1-1 onto ran I X dom I I -1 I X = X
23 21 22 sylan K HL W H X dom I I -1 I X = X
24 20 23 eqtrd K HL W H X dom I I -1 z ran I | I X z = X
25 24 fveq2d K HL W H X dom I ˙ I -1 z ran I | I X z = ˙ X
26 25 oveq1d K HL W H X dom I ˙ I -1 z ran I | I X z ˙ ˙ W = ˙ X ˙ ˙ W
27 26 fvoveq1d K HL W H X dom I I ˙ I -1 z ran I | I X z ˙ ˙ W ˙ W = I ˙ X ˙ ˙ W ˙ W
28 16 27 eqtr2d K HL W H X dom I I ˙ X ˙ ˙ W ˙ W = N I X