Metamath Proof Explorer


Theorem doca2N

Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses doca2.h H = LHyp K
doca2.i I = DIsoA K W
doca2.n ˙ = ocA K W
Assertion doca2N K HL W H X dom I ˙ ˙ I X = I X

Proof

Step Hyp Ref Expression
1 doca2.h H = LHyp K
2 doca2.i I = DIsoA K W
3 doca2.n ˙ = ocA K W
4 hlol K HL K OL
5 4 ad2antrr K HL W H X dom I K OL
6 eqid Base K = Base K
7 6 1 2 diadmclN K HL W H X dom I X Base K
8 6 1 lhpbase W H W Base K
9 8 ad2antlr K HL W H X dom I W Base K
10 eqid join K = join K
11 eqid meet K = meet K
12 eqid oc K = oc K
13 6 10 11 12 oldmm1 K OL X Base K W Base K oc K X meet K W = oc K X join K oc K W
14 5 7 9 13 syl3anc K HL W H X dom I oc K X meet K W = oc K X join K oc K W
15 14 oveq1d K HL W H X dom I oc K X meet K W meet K W = oc K X join K oc K W meet K W
16 15 eqcomd K HL W H X dom I oc K X join K oc K W meet K W = oc K X meet K W meet K W
17 16 fveq2d K HL W H X dom I oc K oc K X join K oc K W meet K W = oc K oc K X meet K W meet K W
18 hllat K HL K Lat
19 18 ad2antrr K HL W H X dom I K Lat
20 6 11 latmcl K Lat X Base K W Base K X meet K W Base K
21 19 7 9 20 syl3anc K HL W H X dom I X meet K W Base K
22 6 10 11 12 oldmm2 K OL X meet K W Base K W Base K oc K oc K X meet K W meet K W = X meet K W join K oc K W
23 5 21 9 22 syl3anc K HL W H X dom I oc K oc K X meet K W meet K W = X meet K W join K oc K W
24 17 23 eqtrd K HL W H X dom I oc K oc K X join K oc K W meet K W = X meet K W join K oc K W
25 24 oveq1d K HL W H X dom I oc K oc K X join K oc K W meet K W join K oc K W = X meet K W join K oc K W join K oc K W
26 hlop K HL K OP
27 26 ad2antrr K HL W H X dom I K OP
28 6 12 opoccl K OP W Base K oc K W Base K
29 27 9 28 syl2anc K HL W H X dom I oc K W Base K
30 6 10 latjass K Lat X meet K W Base K oc K W Base K oc K W Base K X meet K W join K oc K W join K oc K W = X meet K W join K oc K W join K oc K W
31 19 21 29 29 30 syl13anc K HL W H X dom I X meet K W join K oc K W join K oc K W = X meet K W join K oc K W join K oc K W
32 6 10 latjidm K Lat oc K W Base K oc K W join K oc K W = oc K W
33 19 29 32 syl2anc K HL W H X dom I oc K W join K oc K W = oc K W
34 33 oveq2d K HL W H X dom I X meet K W join K oc K W join K oc K W = X meet K W join K oc K W
35 31 34 eqtrd K HL W H X dom I X meet K W join K oc K W join K oc K W = X meet K W join K oc K W
36 25 35 eqtrd K HL W H X dom I oc K oc K X join K oc K W meet K W join K oc K W = X meet K W join K oc K W
37 36 oveq1d K HL W H X dom I oc K oc K X join K oc K W meet K W join K oc K W meet K W = X meet K W join K oc K W meet K W
38 hloml K HL K OML
39 38 ad2antrr K HL W H X dom I K OML
40 eqid K = K
41 6 40 11 latmle2 K Lat X Base K W Base K X meet K W K W
42 19 7 9 41 syl3anc K HL W H X dom I X meet K W K W
43 6 40 10 11 12 omlspjN K OML X meet K W Base K W Base K X meet K W K W X meet K W join K oc K W meet K W = X meet K W
44 39 21 9 42 43 syl121anc K HL W H X dom I X meet K W join K oc K W meet K W = X meet K W
45 40 1 2 diadmleN K HL W H X dom I X K W
46 6 40 11 latleeqm1 K Lat X Base K W Base K X K W X meet K W = X
47 19 7 9 46 syl3anc K HL W H X dom I X K W X meet K W = X
48 45 47 mpbid K HL W H X dom I X meet K W = X
49 37 44 48 3eqtrrd K HL W H X dom I X = oc K oc K X join K oc K W meet K W join K oc K W meet K W
50 49 fveq2d K HL W H X dom I I X = I oc K oc K X join K oc K W meet K W join K oc K W meet K W
51 6 12 opoccl K OP X Base K oc K X Base K
52 27 7 51 syl2anc K HL W H X dom I oc K X Base K
53 6 10 latjcl K Lat oc K X Base K oc K W Base K oc K X join K oc K W Base K
54 19 52 29 53 syl3anc K HL W H X dom I oc K X join K oc K W Base K
55 6 11 latmcl K Lat oc K X join K oc K W Base K W Base K oc K X join K oc K W meet K W Base K
56 19 54 9 55 syl3anc K HL W H X dom I oc K X join K oc K W meet K W Base K
57 6 40 11 latmle2 K Lat oc K X join K oc K W Base K W Base K oc K X join K oc K W meet K W K W
58 19 54 9 57 syl3anc K HL W H X dom I oc K X join K oc K W meet K W K W
59 6 40 1 2 diaeldm K HL W H oc K X join K oc K W meet K W dom I oc K X join K oc K W meet K W Base K oc K X join K oc K W meet K W K W
60 59 adantr K HL W H X dom I oc K X join K oc K W meet K W dom I oc K X join K oc K W meet K W Base K oc K X join K oc K W meet K W K W
61 56 58 60 mpbir2and K HL W H X dom I oc K X join K oc K W meet K W dom I
62 eqid LTrn K W = LTrn K W
63 10 11 12 1 62 2 3 diaocN K HL W H oc K X join K oc K W meet K W dom I I oc K oc K X join K oc K W meet K W join K oc K W meet K W = ˙ I oc K X join K oc K W meet K W
64 61 63 syldan K HL W H X dom I I oc K oc K X join K oc K W meet K W join K oc K W meet K W = ˙ I oc K X join K oc K W meet K W
65 10 11 12 1 62 2 3 diaocN K HL W H X dom I I oc K X join K oc K W meet K W = ˙ I X
66 65 fveq2d K HL W H X dom I ˙ I oc K X join K oc K W meet K W = ˙ ˙ I X
67 50 64 66 3eqtrrd K HL W H X dom I ˙ ˙ I X = I X