Metamath Proof Explorer


Theorem doca3N

Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses doca2.h H = LHyp K
doca2.i I = DIsoA K W
doca2.n ˙ = ocA K W
Assertion doca3N K HL W H X ran I ˙ ˙ X = X

Proof

Step Hyp Ref Expression
1 doca2.h H = LHyp K
2 doca2.i I = DIsoA K W
3 doca2.n ˙ = ocA K W
4 1 2 diacnvclN K HL W H X ran I I -1 X dom I
5 1 2 3 doca2N K HL W H I -1 X dom I ˙ ˙ I I -1 X = I I -1 X
6 4 5 syldan K HL W H X ran I ˙ ˙ I I -1 X = I I -1 X
7 1 2 diaf11N K HL W H I : dom I 1-1 onto ran I
8 f1ocnvfv2 I : dom I 1-1 onto ran I X ran I I I -1 X = X
9 7 8 sylan K HL W H X ran I I I -1 X = X
10 9 fveq2d K HL W H X ran I ˙ I I -1 X = ˙ X
11 10 fveq2d K HL W H X ran I ˙ ˙ I I -1 X = ˙ ˙ X
12 6 11 9 3eqtr3d K HL W H X ran I ˙ ˙ X = X