Step |
Hyp |
Ref |
Expression |
1 |
|
doca2.h |
|- H = ( LHyp ` K ) |
2 |
|
doca2.i |
|- I = ( ( DIsoA ` K ) ` W ) |
3 |
|
doca2.n |
|- ._|_ = ( ( ocA ` K ) ` W ) |
4 |
1 2
|
diacnvclN |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. dom I ) |
5 |
1 2 3
|
doca2N |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' I ` X ) e. dom I ) -> ( ._|_ ` ( ._|_ ` ( I ` ( `' I ` X ) ) ) ) = ( I ` ( `' I ` X ) ) ) |
6 |
4 5
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( ._|_ ` ( I ` ( `' I ` X ) ) ) ) = ( I ` ( `' I ` X ) ) ) |
7 |
1 2
|
diaf11N |
|- ( ( K e. HL /\ W e. H ) -> I : dom I -1-1-onto-> ran I ) |
8 |
|
f1ocnvfv2 |
|- ( ( I : dom I -1-1-onto-> ran I /\ X e. ran I ) -> ( I ` ( `' I ` X ) ) = X ) |
9 |
7 8
|
sylan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( `' I ` X ) ) = X ) |
10 |
9
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( I ` ( `' I ` X ) ) ) = ( ._|_ ` X ) ) |
11 |
10
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( ._|_ ` ( I ` ( `' I ` X ) ) ) ) = ( ._|_ ` ( ._|_ ` X ) ) ) |
12 |
6 11 9
|
3eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( ._|_ ` ( ._|_ ` X ) ) = X ) |